已知橢圓的左頂點(diǎn),過(guò)右焦點(diǎn)且垂直于長(zhǎng)軸的弦長(zhǎng)為

(Ⅰ)求橢圓的方程;

(Ⅱ)若過(guò)點(diǎn)的直線與橢圓交于點(diǎn),與軸交于點(diǎn),過(guò)原點(diǎn)與平行的直線與橢圓交于點(diǎn),求證:為定值.

 

【答案】

(1) (2)

【解析】

試題分析:解:(1),設(shè)過(guò)右焦點(diǎn)且垂直于長(zhǎng)軸的弦為,將代入橢圓方程,解得,  2分

,可得.  4分

所以,橢圓方程為.  6分

(2)由題意知,直線斜率存在,故設(shè)為,則直線的方程為,直線的方程為.可得,則.  8分

設(shè),,聯(lián)立方程組,

消去得:,

,,                             

.  11分

設(shè)與橢圓交另一點(diǎn)為,,聯(lián)立方程組,

消去,

所以.  13分

所以等于定值.  15分

考點(diǎn):橢圓的幾何性質(zhì)

點(diǎn)評(píng):本題主要考橢圓的幾何性質(zhì),直線與橢圓的位置關(guān)系等基礎(chǔ)知識(shí),考查解析幾何的基本思想方法和綜合解題能力

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2013年浙江省杭州市重點(diǎn)高中高考命題比賽數(shù)學(xué)參賽試卷01(理科)(解析版) 題型:解答題

已知橢圓的左頂點(diǎn)A(-2,0),過(guò)右焦點(diǎn)F且垂直于長(zhǎng)軸的弦長(zhǎng)為3.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若過(guò)點(diǎn)A的直線l與橢圓交于點(diǎn)Q,與y軸交于點(diǎn)R,過(guò)原點(diǎn)與l平行的直線與橢圓交于點(diǎn)P,求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013年天津市耀華中學(xué)高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

已知橢圓的左頂點(diǎn)A(-2,0),過(guò)右焦點(diǎn)F且垂直于長(zhǎng)軸的弦長(zhǎng)為3.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若過(guò)點(diǎn)A的直線l與橢圓交于點(diǎn)Q,與y軸交于點(diǎn)R,過(guò)原點(diǎn)與l平行的直線與橢圓交于點(diǎn)P,求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年江蘇省南通市海門中學(xué)高三(上)開學(xué)檢測(cè)數(shù)學(xué)試卷(解析版) 題型:解答題

已知橢圓的左頂點(diǎn)為A,左、右焦點(diǎn)分別為F1,F(xiàn)2,且圓C:過(guò)A,F(xiàn)2兩點(diǎn).
(1)求橢圓標(biāo)準(zhǔn)的方程;
(2)設(shè)直線PF2的傾斜角為α,直線PF1的傾斜角為β,當(dāng)β-α=時(shí),證明:點(diǎn)P在一定圓上;
(3)設(shè)橢圓的上頂點(diǎn)為Q,證明:PQ=PF1+PF2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013年江蘇省高考數(shù)學(xué)模擬試卷(二)(解析版) 題型:解答題

已知橢圓的左頂點(diǎn)為A,左、右焦點(diǎn)分別為F1,F(xiàn)2,且圓C:過(guò)A,F(xiàn)2兩點(diǎn).
(1)求橢圓標(biāo)準(zhǔn)的方程;
(2)設(shè)直線PF2的傾斜角為α,直線PF1的傾斜角為β,當(dāng)β-α=時(shí),證明:點(diǎn)P在一定圓上;
(3)設(shè)橢圓的上頂點(diǎn)為Q,證明:PQ=PF1+PF2

查看答案和解析>>

同步練習(xí)冊(cè)答案