12.微信是騰訊公司推出的一種手機(jī)通訊軟件,一經(jīng)推出便風(fēng)靡全國,甚至涌現(xiàn)出一批在微信的朋友圈內(nèi)銷售商品的人(被稱為微商).為了調(diào)查每天微信用戶使用微信的時間,某經(jīng)銷化妝品的微商在一廣場隨機(jī)采訪男性、女性用戶各50名,其中每天玩微信超過6小時的用戶為“A組”,否則為“B組”,調(diào)查結(jié)果如下:
A組B組合計
男性262450
女性302050
合計5644100
(1)根據(jù)以上數(shù)據(jù),能否有60%的把握認(rèn)為“A組”用戶與“性別”有關(guān)?
(2)現(xiàn)從調(diào)查的女性用戶中按分層抽樣的方法選出5人贈送營養(yǎng)面膜1份,求所抽取5人中“A組”和“B組”的人數(shù);
(3)從(2)中抽取的5人中再隨機(jī)抽取2人贈送200元的護(hù)膚品套裝,求這2人中至少有1人在“A組”的概率.
參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d為樣本容量.
參考數(shù)據(jù):
P(K2≥k00.500.400.250.050.0250.010
k00.4550.7081.3233.8415.0246.635

分析 (1)利用列聯(lián)表,計算K2,對照數(shù)表得出概率結(jié)論;
(2)利用分層抽樣原理計算從女性中選出5人中“A組”和“B組”的人數(shù);
(3)計算基本事件數(shù),求出對應(yīng)的概率值.

解答 解:(1)由列聯(lián)表可得K2=$\frac{100(26×20-30×24)^{2}}{56×44×50×50}$≈0.649<0.708-----(2分)
沒有60%的把握認(rèn)為“A組”用戶與“性別”有關(guān)------------------(4分)
(2)由題意得所抽取的5位女性中,“A組”3人,“B組”2人.-------------(6分)
(3)從這5人中任取2人,基本事件空間${C}_{5}^{2}$=10種,全是B組有1種情況,
∴這2人中至少有1人在“A組”的概率是1-$\frac{1}{10}$=$\frac{9}{10}$.---------------------(12分)

點評 本題考查了獨立性檢驗的應(yīng)用問題,也考查了分層抽樣方法的應(yīng)用問題和用列舉法求古典概型的概率問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知$\overrightarrow a=({1,2}),\overrightarrow b=({m,1})$,若$\overrightarrow a⊥\overrightarrow b$,則m=( 。
A.$-\frac{1}{2}$B.-2C.$\frac{1}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知命題P:若平面向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$滿足($\overrightarrow{a}$•$\overrightarrow$)•$\overrightarrow{c}$=($\overrightarrow$•$\overrightarrow{c}$)•$\overrightarrow{a}$,則向量$\overrightarrow{a}$與$\overrightarrow{c}$一定共線.命題Q:若$\overrightarrow{a}$•$\overrightarrow$>0,則向量$\overrightarrow{a}$與$\overrightarrow$的夾角是銳角.則下列選項中是真命題的是( 。
A.P∧QB.(¬P)∧QC.(¬P)∧(¬Q)D.P∧(¬Q)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,正三棱柱ABC-A1B1C1的所有棱長均為2,D為棱BB1上一點,E是AB的中點.
(1)若D是BB1的中點,證明:平面ADC1⊥平面A1EC;
(2)若平面ADC1與平面ABC的夾角為45°,求BD的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知向量$\overrightarrow{a}$=(1,-1),$\overrightarrow$=(2,x),$\overrightarrow$在$\overrightarrow{a}$方向上的投影是-$\sqrt{2}$,則實數(shù)x=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,在直四棱柱ABCD-A1B1C1D1中,底面ABCD為等腰梯形,AB∥CD,AB=4,BC=CD=2,AA1=2,E、F、G分別是棱A1B1、AB、A1D1的中點.
(Ⅰ)求證:GE⊥平面FCC1;
(Ⅱ)求二面角B-FC1-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖所示的三棱柱中,側(cè)面ABB1A1為邊長等于2的菱形,且∠AA1B1=60°,△ABC為等邊三角形,面ABC⊥面ABB1A1
(1)求證:A1B1⊥AC1
(2)求側(cè)面A1ACC1和側(cè)面BCC1B1所成的二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知數(shù)列{an}滿足a1=1,anan+1=2n,n∈N.
(1)若函數(shù)f(x)=Asin(2x+ϕ)(A>0,0<ϕ<π)在x=$\frac{π}{6}$處取得最大值a4+1,求函數(shù)f(x)在區(qū)間$[-\frac{π}{12},\frac{π}{2}]$上的值域.
(2)求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知函數(shù)$f(x)=\left\{{\begin{array}{l}{{x^2}+(4a-3)x+3a,x<0}\\{{{log}_a}(x+1)+1,x≥0}\end{array}}\right.(a>0且a≠1)$在R上單調(diào)遞減,且關(guān)于x的方程$|f(x)|=2-\frac{x}{3}$恰有兩個不相等的實數(shù)解,則a的取值范圍是(  )
A.(0,$\frac{2}{3}$]B.[$\frac{2}{3}$,$\frac{3}{4}$]C.[$\frac{1}{3}$,$\frac{2}{3}$]D.[$\frac{1}{3}$,$\frac{2}{3}$)

查看答案和解析>>

同步練習(xí)冊答案