19.設(shè)橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的離心率為$\frac{2}{3}\sqrt{2}$,且內(nèi)切于圓x2+y2=9.
(1)求橢圓C的方程;
(2)過點(diǎn)Q(1,0)作直線l(不與x軸垂直)與該橢圓交于M、N兩點(diǎn),與y軸交于點(diǎn)R,若$\overrightarrow{RM}$=λ$\overrightarrow{MQ}$,$\overrightarrow{RN}$=$μ\overrightarrow{NQ}$,試判斷λ+μ是否為定值,并說明理由.

分析 (1)利用圓x2+y2=9的直徑為6,可得a=3,結(jié)合離心率公式,參數(shù)a、b、c的關(guān)系即可得出;
(2)把直線的方程與橢圓的方程聯(lián)立,利用根與系數(shù)的關(guān)系、向量相等即可得到定值.

解答 解:(1)由圓x2+y2=9的直徑為6,
依題意知2a=6,所以a=3,
又因?yàn)閑=$\frac{c}{a}$=$\frac{2\sqrt{2}}{3}$,所以c=2$\sqrt{2}$a,
則b=$\sqrt{{a}^{2}-{c}^{2}}$=1,
所以橢圓C的方程為$\frac{{x}^{2}}{9}$+y2=1;
(2)λ+μ=-$\frac{9}{4}$,即λ+μ為定值.
理由如下:依題意知,直線l的斜率存在,故可設(shè)直線l的方程為y=k(x-1)
設(shè)M(x1,y1),N(x2,y2),R(0,y3),
由$\left\{\begin{array}{l}{y=k(x-1)}\\{{x}^{2}+9{y}^{2}=9}\end{array}\right.$消去y并整理,得(1+9k2)x2-18k2x+9k2-9=0,
即有x1+x2=$\frac{18{k}^{2}}{1+9{k}^{2}}$①,x1x2=$\frac{9{k}^{2}-9}{1+9{k}^{2}}$②,
由$\overrightarrow{RM}$=λ$\overrightarrow{MQ}$,可得(x1,y1)-(0,y3)=λ[(1,0)-(x1,y1)],
即$\left\{\begin{array}{l}{{x}_{1}=λ(1-{x}_{1})}\\{{y}_{1}-{y}_{3}=-λ{(lán)y}_{1}}\end{array}\right.$,又x1≠1與x1≠1軸不垂直,所以x1≠1,
所以λ=$\frac{{x}_{1}}{1-{x}_{1}}$,同理μ=$\frac{{x}_{2}}{1-{x}_{2}}$,
所以λ+μ=$\frac{{x}_{1}}{1-{x}_{1}}$+$\frac{{x}_{2}}{1-{x}_{2}}$=$\frac{{x}_{1}+{x}_{2}-2{x}_{1}{x}_{2}}{1-({x}_{1}+{x}_{2})+{x}_{1}{x}_{2}}$,
將①②代入上式可得λ+μ=-$\frac{9}{4}$,即λ+μ為定值.

點(diǎn)評 熟練掌握橢圓的標(biāo)準(zhǔn)方程及性質(zhì)、直線與橢圓的相交問題、根與系數(shù)的關(guān)系、弦長公式、點(diǎn)到直線的距離公式、向量相等是解題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.如圖,已知在四棱錐P-ABCD中,底面ABCD是菱形,PA⊥底面ABCD,AB=1,PA•AC=1,∠ABC=θ(0<θ≤$\frac{π}{2}$),則四棱錐P-ABCD的體積V的取值范圍是( 。
A.[$\frac{\sqrt{2}}{6}$,$\frac{1}{3}$)B.($\frac{\sqrt{2}}{12}$,$\frac{1}{6}$]C.($\frac{\sqrt{2}}{6}$,$\frac{1}{3}$]D.[$\frac{\sqrt{2}}{12}$,$\frac{1}{6}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若函數(shù)f(x)=ln(x+$\sqrt{a+{x}^{2}}$)為奇函數(shù),則a=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}x-y+1≥0\\ x+y≥0\\ x≤0\end{array}\right.$,則z=|x+2y-3|的最小值為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.如圖所示,使電路接通,開關(guān)不同的開閉方式共有(  )
A.11B.12C.20D.21

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.如圖,B、D是以AC為直徑的圓上的兩點(diǎn),其中$AB=\sqrt{t+1}$,$AD=\sqrt{t+2}$,則$\overrightarrow{AC}$$•\overrightarrow{BD}$=( 。
A.1B.2C.tD.2t

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.在等比數(shù)列{an}中,公比q≠1,且a1+a2,a3+a4,a5+a6成等差數(shù)列,若a1+a2+a3=1,則a12+a22+…+a102=(  )
A.1B.10C.32D.100

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若不等式a2+b2≥2kab對任意a、b∈R都成立,則實(shí)數(shù)k的取值范圍是[-1,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$,左、右焦點(diǎn)分別為F1,F(xiàn)2.G為橢圓上異于長軸端點(diǎn)的一點(diǎn),若△GF1F2的面積為2,且其內(nèi)切圓半徑為2-$\sqrt{2}$.
(1)求橢圓C的方程;
(2)直線l:y=k(x-1)(k<0)與橢圓C相交于A、B兩點(diǎn),點(diǎn)P(3,0),記直線PA,PB的斜率分別為k1、k2,當(dāng)$\frac{{k}_{1}{k}_{2}}{k}$取得最大值時,求直線l的方程.

查看答案和解析>>

同步練習(xí)冊答案