已知f(x-3)=x2-5x+5,則f(x)=
x2+x-1
x2+x-1
分析:用配湊法求該函數(shù)的解析式.
解答:解:f(x-3)=x2-5x+5=(x-3)2+(x-3)-1,
所以f(x)=x2+x-1,
故答案為:x2+x-1.
點(diǎn)評(píng):本題考察了函數(shù)解析式的求解,用配湊或換元法均可.求函數(shù)解析式常用的方法有:配湊法,換元法,待定系數(shù)法,方程組法,賦值法等,關(guān)鍵是要根據(jù)具體題目的條件判斷出該選擇哪種方法求解析式.屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=loga(1-x),g(x)=loga(1+x)(a>0,a≠1).
(1)判斷f(x)與g(x)圖象的位置關(guān)系;
(2)當(dāng)0<a<1時(shí),比較|f(x)|與|g(x)|的大。
(3)討論關(guān)于x的方程ag(-x2+x+1)=af(k)-x的實(shí)根的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是區(qū)間(-∞,+∞)上的奇函數(shù),f(1)=-2,f(3)=1,則( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f 1(x)=|3x-1|,f2(x)=|a•3x-9|(a>0),x∈R,且f(x)=
f1(x),f1(x)≤f2(x)
f2(x),f1(x)>f2(x)

(1)當(dāng)a=1時(shí),求f(x)的解析式;
(2)在(1)的條件下,若方程f(x)-m=0有4個(gè)不等的實(shí)根,求實(shí)數(shù)m的范圍;
(3)當(dāng)2≤a<9時(shí),設(shè)f(x)=f2(x)所對(duì)應(yīng)的自變量取值區(qū)間的長(zhǎng)度為l(閉區(qū)間[m,n]的長(zhǎng)度定義為n-m),試求l的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•閔行區(qū)二模)已知f(x)=x|x-a|+b,x∈R.
(1)當(dāng)a=1,b=0時(shí),判斷f(x)的奇偶性,并說明理由;
(2)當(dāng)a=1,b=1時(shí),若f(2x)=
54
,求x的值;
(3)若b<0,且對(duì)任何x∈[0,1]不等式f(x)<0恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
x-3,(x≥9)
f(x+4),(x<9)
,則f(1)的值為
6
6

查看答案和解析>>

同步練習(xí)冊(cè)答案