分析 (1)求出函數(shù)f(x)的導(dǎo)數(shù),得到關(guān)于a的方程,求出a的值,計(jì)算g(1)=0,求出b的值,從而求出g(x)的解析式即可;
(2)求出函數(shù)的導(dǎo)數(shù),問(wèn)題轉(zhuǎn)化為2m-2≤x+$\frac{1}{x}$,x∈[1,+∞),根據(jù)函數(shù)的單調(diào)性求出m的范圍即可.
解答 解:(1)由已知得f′(x)=$\frac{1}{x}$,所以f′(1)=1=$\frac{1}{2}$a,a=2.
又因?yàn)間(1)=0=$\frac{1}{2}$a+b,所以b=-1,所以g(x)=x-1.
(2)因?yàn)棣眨▁)=$\frac{m(x-1)}{x+1}$-f(x)=$\frac{m(x-1)}{x+1}$-ln x在[1,+∞)上是減函數(shù).
所以φ′(x)$\frac{-{x}^{2}+(2m-2)(x-1)}{x(x+1)^{2}}$≤0在[1,+∞)上恒成立.
即x2-(2m-2)x+1≥0在[1,+∞)上恒成立,
則2m-2≤x+$\frac{1}{x}$,x∈[1,+∞),
因?yàn)閤+$\frac{1}{x}$∈[2,+∞),所以2m-2≤2,m≤2,
故數(shù)m的取值范圍是(-∞,2].
點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、最值問(wèn)題,考查導(dǎo)數(shù)的應(yīng)用以及切線(xiàn)方程問(wèn)題,考查函數(shù)恒成立問(wèn)題,是一道中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $-\frac{1}{2}$ | C. | $\frac{{\sqrt{2}}}{2}$ | D. | $-\frac{{\sqrt{2}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 18種 | B. | 20種 | C. | 22種 | D. | 24種 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
質(zhì)量指標(biāo)值分組 | [75,85) | [85,95) | [95,105) | [105,115) | [115,125) |
頻數(shù) | 6 | 26 | 38 | 22 | 8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ① | B. | ② | C. | ①② | D. | ③ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{{\sqrt{2}}}{3}$ | C. | $\frac{{\sqrt{3}}}{3}$ | D. | $\frac{{\sqrt{5}}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
焦慮 | 說(shuō)謊 | 懶惰 | 總計(jì) | |
女生 | 5 | 10 | 15 | 30 |
男生 | 20 | 10 | 50 | 80 |
總計(jì) | 25 | 20 | 651 | 110 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com