設(shè)A(x1,y1),B(x2,y2)是平面直角坐標(biāo)系xOy上的兩點(diǎn),現(xiàn)定義由點(diǎn)A到點(diǎn)B的一種折線距離ρ(A,B)為ρ(A,B)=|x2-x1|+|y2-y1|
對于平面xOy上給定的不同的兩點(diǎn)A(x1,y1),B(x2,y2),
(1)若點(diǎn)C(x,y)是平面xOy上的點(diǎn),試證明ρ(A,C)+ρ(C,B)≥ρ(A,B);
(2)在平面xOy上是否存在點(diǎn)C(x,y),同時(shí)滿足
①ρ(A,C)+ρ(C,B)=ρ(A,B)②ρ(A,C)=ρ(C,B)若存在,請求出所有符合條件的點(diǎn),請予以證明.
分析:(1)應(yīng)用絕對值不等式的性質(zhì)|a|+|b|≥|a+b|
(2)假設(shè)符合條件的點(diǎn)存在,檢驗(yàn)條件①ρ(A,C)+ρ(C,B)=ρ(A,B)與②ρ(A,C)=ρ(C,B)同時(shí)成立時(shí),x,y的值是否存在.
解答:(1)證明:由絕對值不等式知,
ρ(A,C)+ρ(C,B)=|x-x1|+|x2-x|+|y-y1|+|y2-y
≥|(x-x1)+(x2-x)|+|(y-y1)+(y2-y)|
=|x2-x1|+|y2-y1|
=ρ(A,B)
當(dāng)且僅當(dāng)(x-x1)•(x2-x)≥0,且(y-y1)•(y2-y)≥0時(shí)等號(hào)成立.
(2)解:由ρ(A,C)+ρ(C,B)=ρ(A,B)得
(x-x1)•(x2-x)≥0且(y-y1)•(y2-y)≥0  (Ⅰ)
由ρ(A,C)=ρ(C,B)得|x-x1|+|y-y1|=|x2-x|+|y2-y|(Ⅱ)
因?yàn)锳(x1,y1),B(x2,y2)是不同的兩點(diǎn),則:1°若x1=x2且y1≠y2,
不妨設(shè)y1<y2,由(Ⅰ)得x=x1=x2,且y1≤y≤y2
由(Ⅱ)得y=
y1+y2
2
,
此時(shí),點(diǎn)C是線段AB的中點(diǎn),即只有點(diǎn)C(
x1+x2
2
,
y1+y2
2
)
滿足條件;
2°若x1≠x2且y1=y2,
同理可得:只有AB的中點(diǎn)C(
x1+x2
2
,
y1+y2
2
)
滿足條件;
3°若x1≠x2且y1≠y2,不妨設(shè)x1<x2且y1<y2
由(Ⅰ)得x1≤x≤x2且y1≤y≤y2,
由(Ⅱ)得x+y=
x1+x2
2
+
y1+y2
2
,
此時(shí),所有符合條件的點(diǎn)C的軌跡是一條線段,即:過AB的中點(diǎn)(
x1+x2
2
,
y1+y2
2
)
,
斜率為-1的直線x+y=
x1+x2
2
+
y1+y2
2
夾在矩形AA1BB1之間的部分,
其中A(x1,y1),A1(x2,y1),B(x2,y2),B1(x1,y2).
點(diǎn)評:本題考查絕對值不等式的性質(zhì),注意分類討論的數(shù)學(xué)思想方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C:x2=4y的焦點(diǎn)為F,直線l過點(diǎn)F交拋物線C于A、B兩點(diǎn).
(Ⅰ)設(shè)A(x1,y1),B(x2,y2),求
1
y1
+
1
y2
的取值范圍;
(Ⅱ)是否存在定點(diǎn)Q,使得無論AB怎樣運(yùn)動(dòng)都有∠AQF=∠BQF?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)A(x1,y1),B(x2,y2)是函數(shù)f(x)=
1
2
+log2
x
1-x
的圖象上兩點(diǎn),且
OM
=
1
2
(
OA
+
OB
)
,O為坐標(biāo)原點(diǎn),已知點(diǎn)M的橫坐標(biāo)為
1
2

(Ⅰ)求證:點(diǎn)M的縱坐標(biāo)為定值;
(Ⅱ)定義定義Sn=
n-1
i=1
f(
i
n
)=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)
,其中n∈N*且n≥2,求S2011;
(Ⅲ)對于(Ⅱ)中的Sn,設(shè)an=
1
2Sn+1
(n∈N*)
.若對于任意n∈N*,不等式kan3-3an2+1>0恒成立,試求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)A(x1,y1),B(x2,y2)是橢圓
y2
a2
+
x2
b2
=1(a>b>0)
上的兩點(diǎn),已知O為坐標(biāo)原點(diǎn),橢圓的離心率e=
3
2
,短軸長為2,且
m
=(
x1
b
,
y1
a
),
n
=(
x2
b
y2
a
)
,若
m
n
=0

(Ⅰ)求橢圓的方程;
(Ⅱ)若直線AB過橢圓的焦點(diǎn)F(0,c)(c為半焦距),求△AOB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)A(x1,y1),B(x2,y2)是函數(shù)f(x)=
1
2
+log2
x
1-x
圖象上任意兩點(diǎn),且
OM
=
1
2
OA
+
OB
),已知點(diǎn)M的橫坐標(biāo)為
1
2
,且有Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
),其中n∈N*且n≥2,
(1)求點(diǎn)M的縱坐標(biāo)值;
(2)求s2,s3,s4及Sn;
(3)已知an=
1
(Sn+1)(Sn+1+1)
,其中n∈N*,且Tn為數(shù)列{an}的前n項(xiàng)和,若Tn≤λ(Sn+1+1)對一切n∈N*都成立,試求λ的最小正整數(shù)值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)A(x1,y1)、B(x2,y2)、C(x3,y3)是拋物線y=x2上的三個(gè)動(dòng)點(diǎn),其中x3>x2≥0,△ABC是以B為直角頂點(diǎn)的等腰直角三角形.
(1)求證:直線BC的斜率等于x2+x3,也等于
x2-x1x3-x2
;
(2)求A、C兩點(diǎn)之間距離的最小值.

查看答案和解析>>

同步練習(xí)冊答案