已知拋物線的焦點(diǎn)為,直線交于、兩點(diǎn).則=________.

 

【答案】

【解析】

試題分析:由題意可知,y²=4x=(2x-4)²,聯(lián)立方程組消元法得到,x²-5x+4=0,所以x=1,x=4,A(1,-2),B(4,4),2p=4

=1,F(xiàn)(1,0),所以AB=3,AF=2,BF=5,則利用三角形中的余弦定理

cosAFB=-,故答案為-

考點(diǎn):本題主要考查了拋物線的定義的運(yùn)用。直線與拋物線的位置關(guān)系的運(yùn)用。

點(diǎn)評(píng):解決該試題的關(guān)鍵是設(shè)出點(diǎn),聯(lián)立方程組,運(yùn)用韋達(dá)定理得到根與系數(shù)的關(guān)系,結(jié)合坐標(biāo)得到角AFB的余弦值的求解。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

()(本題滿分8分)已知拋物線的焦點(diǎn)為,直線過(guò)點(diǎn)且其傾斜角為,設(shè)直線與曲線相交于兩點(diǎn),求以線段為直徑的圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆四川省高二下學(xué)期期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題

已知拋物線,的焦點(diǎn)為F,直線與拋物線C交于A、B兩點(diǎn),則(    )

A.               B.               C.             D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆重慶市高二上學(xué)期期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

已知拋物線的焦點(diǎn)為圓的圓心,直線交于不同的兩點(diǎn).

(1) 求的方程;

(2) 求弦長(zhǎng)。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年江西省高三第二學(xué)期第一次模擬考試?yán)砜茢?shù)學(xué) 題型:解答題

 

(本小題滿分13分)

已知拋物線的焦點(diǎn)為,過(guò)點(diǎn)作直線交拋物線、兩點(diǎn);橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,點(diǎn)是它的一個(gè)頂點(diǎn),且其離心率

(1)求橢圓的方程;

(2)經(jīng)過(guò)、兩點(diǎn)分別作拋物線的切線、,切線相交于點(diǎn).證明:

(3) 橢圓上是否存在一點(diǎn),經(jīng)過(guò)點(diǎn)作拋物線的兩條切線、為切點(diǎn)),使得直線過(guò)點(diǎn)?若存在,求出拋物線與切線、所圍成圖形的面積;若不存在,試說(shuō)明理由.

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案