已知點是橢圓上一點,分別為的左右焦點,的面積為.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè),過點作直線,交橢圓異于兩點,直線的斜率分別為,證明:為定值.
(Ⅰ);(Ⅱ)詳見解析.

試題分析:本題考查橢圓的定義、余弦定理及韋達定理的應(yīng)用.第一問是利用三角形面積公式、余弦定理、橢圓的定義,三個方程聯(lián)立,解出,再根據(jù)的關(guān)系求,本問分析已知條件是解題的關(guān)鍵;第二問是直線與橢圓相交于兩點,先設(shè)出兩點坐標,本題的突破口是在消參后的方程中找出兩根之和、兩根之積,整理斜率的表達式,但是在本問中需考慮直線的斜率是否存在,此題中蘊含了分類討論的思想的應(yīng)用.
試題解析:(Ⅰ)在中,
,得
由余弦定理,得
,
從而,即,從而,
故橢圓的方程為.                                          6分
(Ⅱ)當直線的斜率存在時,設(shè)其方程為,
,得.                 8分
設(shè),,,
從而.                                                                             11分
當直線的斜率不存在時,得,得
綜上,恒有.                                              12分
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的離心率為,直線與以原點為圓心、以橢圓的短半軸長為半徑的圓相切.
(1)求橢圓的方程;
(2)設(shè)橢圓的左焦點為,右焦點為,直線過點,且垂直于橢圓的長軸,動直線垂直于,垂足為點,線段的垂直平分線交于點,求點的軌跡的方程;
(3)設(shè)軸交于點,不同的兩點上(也不重合),且滿足,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知是橢圓的右焦點,圓軸交于兩點,是橢圓與圓的一個交點,且 
(Ⅰ)求橢圓的離心率;
(Ⅱ)過點與圓相切的直線的另一交點為,且的面積為,求橢圓的方程

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知為拋物線的焦點,拋物線上點滿足

(Ⅰ)求拋物線的方程;
(Ⅱ)點的坐標為(,),過點F作斜率為的直線與拋物線交于、兩點,、兩點的橫坐標均不為,連結(jié)、并延長交拋物線于、兩點,設(shè)直線的斜率為,問是否為定值,若是求出該定值,若不是說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

中,.若以為焦點的橢圓經(jīng)過點,則該橢圓的離心率(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

過橢圓的左焦點作互相垂直的兩條直線,分別交橢圓于四點,則四邊形面積的最大值與最小值之差為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

F1,F(xiàn)2是雙曲線的左、右焦點,過左焦點F1的直線與雙曲線C的左、右兩支分別交于A,B兩點,若,則雙曲線的離心率是(   )
A.B.C.2D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知拋物線的焦點恰為雙曲線的右焦點,且兩曲線交點的連線過點,則雙曲線的離心率為  (   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知雙曲線的左焦點為,點為雙曲線右支上一點,且與圓相切于點,為線段的中點,為坐標原點, 則=       

查看答案和解析>>

同步練習冊答案