17.已知二次函數(shù)f(x)=ax2+bx+c.
(1)若f(x)>0的解集為{x|-3<x<4},解關(guān)于x的不等式bx2+2ax-(c+3b)<0.
(2)若對(duì)任意x∈R,不等式f(x)≥2ax+b恒成立,求${\;}_{\;}^{\;}\frac{b^2}{{{a^2}+{c^2}}}_{\;}^{\;}$的最大值.

分析 (1)利用f(x)>0的解集為{x|-3<x<4},得出a,b,c的關(guān)系,再解關(guān)于x的不等式bx2+2ax-(c+3b)<0.
(2)若對(duì)任意x∈R,不等式f(x)≥2ax+b恒成立,得出$\left\{\begin{array}{l}a>0\\△={({b-2a})^2}-4a({c-b})≤0\end{array}\right.?\left\{\begin{array}{l}a>0\\{b^2}+4{a^2}-4ac≤0\end{array}$,即可求${\;}_{\;}^{\;}\frac{b^2}{{{a^2}+{c^2}}}_{\;}^{\;}$的最大值.

解答 解:(1)∵ax2+bx+c>0的解集為{x|-3<x<4},
∴a<0,-3+4=-$\frac{a},-3×4=\frac{c}{a}⇒b=-a,c=-12a({a<0})$.
∴bx2+2ax-(c+3b)<0?-ax2+2ax+15a<0(a<0)?x2-2x-15<0,
∴解集為(-3,5).
(2)∵f(x)≥2ax+b?ax2+(b-2a)x+c-b≥0恒成立,
∴$\left\{\begin{array}{l}a>0\\△={({b-2a})^2}-4a({c-b})≤0\end{array}\right.?\left\{\begin{array}{l}a>0\\{b^2}+4{a^2}-4ac≤0\end{array}$,
∴0≤b2≤4a(c-a),∴$\frac{b^2}{{{a^2}+{c^2}}}≤\frac{{4a({c-a})}}{{{a^2}+{c^2}}}=\frac{{4({\frac{c}{a}-1})}}{{1+{{({\frac{c}{a}})}^2}}}$
$令_{\;}^{\;}t=\frac{c}{a}$-1,∵4a(c-a)≥b2≥0,∴c≥a>0⇒$\frac{c}{a}$≥1⇒t≥0.
∴${\;}_{\;}^{\;}\frac{b^2}{{{a^2}+{c^2}}}_{\;}^{\;}$≤$\frac{4t}{1+(t+1)^{2}}$=$\frac{4t}{{t}^{2}+2t+2}$.
令g(t)=$\frac{4t}{{t}^{2}+2t+2}$(t≥0).
當(dāng)t=0時(shí),g(0)=0,當(dāng)t>0時(shí),g(t)=$\frac{4}{t+\frac{2}{t}+2}$≤$\frac{4}{2\sqrt{2}+2}$=2$\sqrt{2}$-2,
∴${\;}_{\;}^{\;}\frac{b^2}{{{a^2}+{c^2}}}_{\;}^{\;}$的最大值為2$\sqrt{2}$-2.

點(diǎn)評(píng) 本題考查不等式的解法,考查恒成立問(wèn)題,考查學(xué)生轉(zhuǎn)化問(wèn)題的方法,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.某公司計(jì)劃從五位大學(xué)畢業(yè)生甲、乙、丙、丁、戌中錄用兩人,若這五人被錄用的機(jī)會(huì)均等,則甲或乙被錄用的概率為$\frac{7}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.如圖,A,B,C是⊙O上的三點(diǎn),點(diǎn)D是劣弧$\widehat{BC}$的中點(diǎn),過(guò)點(diǎn)B的切線(xiàn)交弦CD的延長(zhǎng)線(xiàn)于點(diǎn)E.若∠BAC=80°,則∠BED=60°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知偶函數(shù)f(x)是定義在{x∈R|x≠0}上的可導(dǎo)函數(shù),其導(dǎo)函數(shù)為f′(x),當(dāng)x<0時(shí),f′(x)>$\frac{f(x)}{x}$恒成立,設(shè)m>1,記a=$\frac{4m•f(m+1)}{m+1}$,b=2$\sqrt{m}$•f(2$\sqrt{m}$),c=(m+1)•f($\frac{4m}{m+1}$),則a,b,c的大小關(guān)系為( 。
A.a<b<cB.a>b>cC.b<a<cD.b>a>c

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)f(x)=|x-1|+|x+3|的最小值為m.
(1)求m的值;
(2)若正實(shí)數(shù)a,b,c滿(mǎn)足a2+ac+ab+bc=m,求2a+b+c的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知a,b是函數(shù)f(x)=x2-mx+n(m>0,n>0)的兩個(gè)不同的零點(diǎn),且a,b,-4這三個(gè)數(shù)可適當(dāng)排序后成等差數(shù)列,也可適當(dāng)排序后成等比數(shù)列,則m+n=26.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.在△ABC中,D為BC中點(diǎn),直線(xiàn)AB上的點(diǎn)M滿(mǎn)足:3$\overrightarrow{AM}$=2λ$\overrightarrow{AD}$+(3-3λ)$\overrightarrow{AC}$(λ∈R),則$\frac{|AM|}{|MB|}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.不等式組$\left\{\begin{array}{l}{x+y-2≥0}\\{x+2y-4≤0}\\{x+3y-2≥0}\end{array}\right.$表示的平面區(qū)域的面積為( 。
A.2B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.分解因式:(x-1)(x-2)(x-3)(x-4)-24.

查看答案和解析>>

同步練習(xí)冊(cè)答案