【題目】已知為坐標(biāo)原點(diǎn),橢圓的右焦點(diǎn)為,離心率為,過點(diǎn)的直線相交于兩點(diǎn),點(diǎn)為線段的中點(diǎn).

1)當(dāng)的傾斜角為時(shí),求直線的方程;

2)試探究在軸上是否存在定點(diǎn),使得為定值?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

【答案】12)存在;定點(diǎn)

【解析】

1)由題得,解得,由,得,可得橢圓方程,與直線方程聯(lián)立,利用韋達(dá)定理求出中點(diǎn)坐標(biāo),進(jìn)而可得直線的方程;(2)直線的斜率不為0時(shí),設(shè),直線的方程為,與橢圓方程聯(lián)立,利用韋達(dá)定理,結(jié)合平面向量數(shù)量積公式可得在x軸上存在定點(diǎn),使得為定值,再驗(yàn)證直線的斜率為0的情況即可.

1)由題得,解得,由,得,故橢圓方程為

設(shè),易知直線的方程為,由,得

于是,

從而,故,

所以直線的方程為.

2)①當(dāng)直線的斜率不為0時(shí),設(shè),直線的方程為,

,得,所以

所以

,得,故此時(shí)點(diǎn);

②當(dāng)直線的斜率為0時(shí),.

綜上,在x軸上存在定點(diǎn),使得為定值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知橢圓過點(diǎn),分別為橢圓的右下頂點(diǎn),且.

1)求橢圓的方程;

2)設(shè)點(diǎn)在橢圓內(nèi),滿足直線,的斜率乘積為,且直線分別交橢圓于點(diǎn),.

①若關(guān)于軸對(duì)稱,求直線的斜率;

②若的面積分別為,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)進(jìn)行疾病普查,為此要檢驗(yàn)每一人的血液,如果當(dāng)?shù)赜?/span>人,若逐個(gè)檢驗(yàn)就需要檢驗(yàn)次,為了減少檢驗(yàn)的工作量,我們把受檢驗(yàn)者分組,假設(shè)每組有個(gè)人,把這個(gè)個(gè)人的血液混合在一起檢驗(yàn),若檢驗(yàn)結(jié)果為陰性,這個(gè)人的血液全為陰性,因而這個(gè)人只要檢驗(yàn)一次就夠了,如果為陽性,為了明確這個(gè)個(gè)人中究竟是哪幾個(gè)人為陽性,就要對(duì)這個(gè)人再逐個(gè)進(jìn)行檢驗(yàn),這時(shí)個(gè)人的檢驗(yàn)次數(shù)為次.假設(shè)在接受檢驗(yàn)的人群中,每個(gè)人的檢驗(yàn)結(jié)果是陽性還是陰性是獨(dú)立的,且每個(gè)人是陽性結(jié)果的概率為.

(Ⅰ)為熟悉檢驗(yàn)流程,先對(duì)3個(gè)人進(jìn)行逐個(gè)檢驗(yàn),若,求3人中恰好有1人檢測(cè)結(jié)果為陽性的概率;

(Ⅱ)設(shè)個(gè)人一組混合檢驗(yàn)時(shí)每個(gè)人的血需要檢驗(yàn)的次數(shù).

①當(dāng),時(shí),求的分布列;

②是運(yùn)用統(tǒng)計(jì)概率的相關(guān)知識(shí),求當(dāng)滿足什么關(guān)系時(shí),用分組的辦法能減少檢驗(yàn)次數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司甲、乙兩個(gè)班組分別試生產(chǎn)同一種規(guī)格的產(chǎn)品,已知此種產(chǎn)品的質(zhì)量指標(biāo)檢測(cè)分?jǐn)?shù)不小于70時(shí),該產(chǎn)品為合格品,否則為次品,現(xiàn)隨機(jī)抽取兩個(gè)班組生產(chǎn)的此種產(chǎn)品各100件進(jìn)行檢測(cè),其結(jié)果如下表:

質(zhì)量指標(biāo)檢測(cè)分?jǐn)?shù)

[50,60)

[60,70)

[70,80)

[80,90)

[90,100]

甲班組生產(chǎn)的產(chǎn)品件數(shù)

7

18

40

29

6

乙班組生產(chǎn)的產(chǎn)品件數(shù)

8

12

40

32

8

(1)根據(jù)表中數(shù)據(jù),估計(jì)甲、乙兩個(gè)班組生產(chǎn)該種產(chǎn)品各自的不合格率;

(2)根據(jù)以上數(shù)據(jù),完成下面的2×2列聯(lián)表,并判斷是否有95%的把握認(rèn)為該種產(chǎn)品的質(zhì)量與生產(chǎn)產(chǎn)品的班組有關(guān)?

甲班組

乙班組

合計(jì)

合格品

次品

合計(jì)

(3)若按合格與不合格比例,從甲班組生產(chǎn)的產(chǎn)品中抽取4件產(chǎn)品,從乙班組生產(chǎn)的產(chǎn)品中抽取5件產(chǎn)品,記事件A:從上面4件甲班組生產(chǎn)的產(chǎn)品中隨機(jī)抽取2件,且都是合格品;事件B:從上面5件乙班組生產(chǎn)的產(chǎn)品中隨機(jī)抽取2件,一件是合格品,一件是次品,試估計(jì)這兩個(gè)事件哪一種情況發(fā)生的可能性大.

附:

P(K2≥k)

0.050

0.010

0.001

k

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點(diǎn)為F,過F作直線交拋物線CA,B兩點(diǎn),過AB分別作拋物線C的切線,兩條切線交于點(diǎn)P.

1)若P的坐標(biāo)為,求直線的斜率;

2)若P始終不在橢圓的內(nèi)部(不包括邊界),求外接圓面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩家外賣公司,其送餐員的日工資方案如下:甲公司底薪70元,每單抽成2元;乙公司無底薪,40單以內(nèi)(含40單)的部分每單抽成4元,超出40單的部分每單抽成6元.假設(shè)同一公司的送餐員一天的送餐單數(shù)相同,現(xiàn)從兩家公司各隨機(jī)抽取一名送餐員,并分別記錄其100天的送餐單數(shù),得到如下頻數(shù)表:

甲公司送餐員送餐單數(shù)頻數(shù)表

送餐單數(shù)

38

39

40

41

42

天數(shù)

20

40

20

10

10

乙公司送餐員送餐單數(shù)頻數(shù)表

送餐單數(shù)

38

39

40

41

42

天數(shù)

10

20

20

40

10

(1)現(xiàn)從甲公司記錄的這100天中隨機(jī)抽取兩天,求這兩天送餐單數(shù)都大于40的概率;

(2)若將頻率視為概率,回答以下問題:

(i)記乙公司送餐員日工資為(單位:元),求的分布列和數(shù)學(xué)期望;

(ii)小明擬到甲、乙兩家公司中的一家應(yīng)聘送餐員,如果僅從日工資的角度考慮,請(qǐng)利用所學(xué)的統(tǒng)計(jì)學(xué)知識(shí)為他作出選擇,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】上世紀(jì)末河南出土的以鶴的尺骨(翅骨)制成的“骨笛”(圖1),充分展示了我國古代高超的音律藝術(shù)及先進(jìn)的數(shù)學(xué)水平,也印證了我國古代音律與歷法的密切聯(lián)系.2為骨笛測(cè)量“春(秋)分”,“夏(冬)至”的示意圖,圖3是某骨笛的部分測(cè)量數(shù)據(jù)(骨笛的彎曲忽略不計(jì)),夏至(或冬至)日光(當(dāng)日正午太陽光線)與春秋分日光(當(dāng)日正午太陽光線)的夾角等于黃赤交角.

由歷法理論知,黃赤交角近1萬年持續(xù)減小,其正切值及對(duì)應(yīng)的年代如下表:

黃赤交角

正切值

0.439

0.444

0.450

0.455

0.461

年代

公元元年

公元前2000

公元前4000

公元前6000

公元前8000

根據(jù)以上信息,通過計(jì)算黃赤交角,可估計(jì)該骨笛的大致年代是( )

A.公元前2000年到公元元年B.公元前4000年到公元前2000

C.公元前6000年到公元前4000D.早于公元前6000

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,是邊長(zhǎng)為4的正方形,平面,分別為的中點(diǎn).

1)證明:平面.

2)若,求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下圖是某機(jī)械零件的幾何結(jié)構(gòu),該幾何體是由兩個(gè)相同的直四棱柱組合而成的,且前后,左右、上下均對(duì)稱,每個(gè)四棱柱的底面都是邊長(zhǎng)為2的正方形,高為4,且兩個(gè)四棱柱的側(cè)棱互相垂直.則這個(gè)幾何體的體積為________.

查看答案和解析>>

同步練習(xí)冊(cè)答案