已知正方形ABCD的四個頂點在橢圓=1(a>b>0)上,AB∥x軸,AD過左焦點F,則該橢圓的離心率為   
【答案】分析:由于正方形ABCD的四個頂點在橢圓=1(a>b>0)上,AB∥x軸,AD過左焦點F,所以點在橢圓上,代入橢圓方程即可求離心率.
解答:解:根據(jù)題意,點在橢圓上,
故有,∴,
故答案為
點評:本題主要考查了橢圓的簡單性質(zhì)和橢圓的標準方程.考查了學生對橢圓基礎知識的掌握和靈活運用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知正方形ABCD的邊長為2,中心為O,四邊形PACE是直角梯形,設PA⊥平面ABCD,且PA=2,CE=1,
(1)求證:面PAD∥面BCE.
(2)求PO與平面PAD所成角的正弦.
(3)求二面角P-EB-C的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知正方形ABCD的中心為E(-1,0),一邊AB所在的直線方程為x+3y-5=0,求其它三邊所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知正方形ABCD的邊長是4,對角線AC與BD交于O,將正方形ABCD沿對角線BD折成60°的二面角,并給出下面結論:①AC⊥BD;②AD⊥CO;③△AOC為正三角形;④cos∠ADC=
3
4
,則其中的真命題是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知正方形ABCD的邊長為1,設
AB
=
a
BC
=
b
,
AC
=
c
,則|
a
-
b
+
c
|等于( 。
A、0
B、
2
C、2
D、2
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知正方形ABCD的邊長為
2
AB
=
a
,
BC
=
b
,
AC
=
c
,則|
a
+
b
+
c
|
=
4
4

查看答案和解析>>

同步練習冊答案