在平面直角坐標系下,已知 C1數(shù)學公式(t為參數(shù),m≠0的常數(shù)),C2數(shù)學公式(θ為參數(shù)).則C1、C2位置關系為


  1. A.
    相交
  2. B.
    相切
  3. C.
    相離
  4. D.
    相交、相切、相離都有可能
A
分析:先把參數(shù)化為普通方程,利用直線恒過圓內點,我們就可以得出結論
解答:C1(t為參數(shù),m≠0的常數(shù)),消去參數(shù)可得;
C2(θ為參數(shù)),消去參數(shù)可得x2+y2=4
因為直線恒過 P(0,1),它在圓內.
∴直線與圓恒相交
故選A
點評:本題考查參數(shù)方程,直線和圓的位置關系,過定點的直線系等知識,判斷點在圓內是關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系下,曲線C1
x=2t+2a
y=-t
(t為參數(shù)),曲線C2:x2+(y-2)2=4.若曲線C1、C2有公共點,則實數(shù)a的取值范圍
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系下,已知A(2,0),B(0,2),C(cos2x,sin2x),(0<x<
π
2
),f(x)=
AB
AC

(Ⅰ)求f(x)的表達式;
(Ⅱ)求f(x)的最小正周期和值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(坐標系與參數(shù)方程)在平面直角坐標系下,曲線C1
x=2t+2a
y=-t
(t為參數(shù)),曲線C2
x=2cosθ
y=2+2sinθ
(a為參數(shù)).若曲線Cl、C2有公共點,則實數(shù)a的取值范圍
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系下,已知A(2,0),B(0,2),C(cos2x,sin2x),f(x)=
AB
AC

(1)求f(x)的表達式和最小正周期;
(2)當0<x<
π
2
時,求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系下,曲線C1
x=-2t+2
y=-t
(t為參數(shù)),曲線C2
x=2cosθ
y=2+2sinθ
(θ為參數(shù)),則曲線C1、C2的公共點的個數(shù)為
0
0

查看答案和解析>>

同步練習冊答案