設(shè)M為平面內(nèi)一些向量組成的集合,若對任意正實數(shù)λ和向量a∈M,都有λa∈M,則稱M為“點射域”,則下列平面向量的集合為“點射域”的是( )
A.{(x,y)|y≥x2}
B.
C.{(x,y)|x2+y2-2y≥0}
D.{(x,y)|3x2+2y2-12<0}
【答案】分析:根據(jù)題中“點射域”的定義對各個選項依次加以判別,可得A、C、D都存在反例,說明它們不是“點射域”,而B通過驗證可知它符合“點射域”的定義,是正確選項.
解答:解:根據(jù)“點射域”的定義,可得向量 ∈M時,與它共線的向量λ∈M也成立,
對于A,M={(x,y)|y≥x2}表示終點在拋物線y≥x2上及其張口以內(nèi)的向量構(gòu)成的區(qū)域,
向量 =(1,1)∈M,但3 =(3,3)∉M,故它不是“點射域”;
對于B,M={(x,y)|},可得任意正實數(shù)λ和向量 ∈M,都有λ∈M,故它是“點射域”;
對于C,M={(x,y)|x2+y2-2y≥0},表示終點在圓x2+y2-2y=0上及其外部的向量構(gòu)成的區(qū)域,
向量 =(0,2)∈M,但 =(0,1)∉M,故它不是“點射域”;
對于D,M={(x,y)|3x2+2y2-12<0},表示終點在橢圓 3x2+2y2=12的向量構(gòu)成的區(qū)域,
向量 =(1,1)∈M,但3 =(3,3)∉M,故它不是“點射域”.
綜上所述,滿足是“點射域”的區(qū)域只有B
故選B.
點評:本題給出特殊定義,叫我們判斷符合題的選項,著重考查集合與元素的關(guān)系和向量的性質(zhì)等知識,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)M為平面內(nèi)一些向量組成的集合,若對任意正實數(shù)λ和向量
a
∈M
,都有λ
a
∈M
,則稱M為“點射域”,則下列平面向量的集合為“點射域”的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•崇明縣二模)設(shè)M為平面內(nèi)一些向量組成的集合,若對任意正實數(shù)λ和向量
a
∈M,都有λ
a
M,則稱M為“點射域”,在此基礎(chǔ)上給出下列四個向量集合:①{(x,y)|y≥x2};②{(x,y)|
x-y≥0
x+y≤0
};③{(x,y)|x2+y2-2y≥0};④{(x,y)|3x2+2y2-12<0}.其中平面向量的集合為“點射域”的序號是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)M為平面內(nèi)一些向量組成的集合,若對任意正實數(shù)t和向量a∈M,都有ta∈M,則稱M為“點射域”.現(xiàn)有下列平面向量的集合:
①{(x,y)|x2≥y};
②{(x,y)|
x+y≥0
x+y≤0
};
③{(x,y)|x2+y2-2x≥0};
④{(x,y)|3x2+2y2-6<0}.
上述為“點射域”的集合有
(寫出所有正確命題的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•肇慶一模)設(shè)M為平面內(nèi)一些向量組成的集合,若對任意正實數(shù)λ和向量a∈M,都有λa∈M,則稱M為“點射域”,則下列平面向量的集合為“點射域”的是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年高考數(shù)學(xué)復(fù)習(xí)卷C(八)(解析版) 題型:填空題

設(shè)M為平面內(nèi)一些向量組成的集合,若對任意正實數(shù)t和向量a∈M,都有ta∈M,則稱M為“點射域”.現(xiàn)有下列平面向量的集合:
①{(x,y)|x2≥y};
②{(x,y)|};
③{(x,y)|x2+y2-2x≥0};
④{(x,y)|3x2+2y2-6<0}.
上述為“點射域”的集合有    (寫出所有正確命題的序號).

查看答案和解析>>

同步練習(xí)冊答案