18.若函數(shù)f(x)=log2(a-2x)+x-1存在零點,則實數(shù)a的取值范圍是a≥2$\sqrt{2}$.

分析 根據(jù)函數(shù)零點與對應方程根之間的關系,我們可將f(x)存在零點轉化為方程log2(a-2x)=1-x有根,結合對數(shù)方程和指數(shù)方程的解法,我們可將他轉化為一個二次方程根的存在性總是,再根據(jù)二次方程根的個數(shù)與△的關系及韋達定理,我們易構造一個關于a的不等式,解不等式即可求出實數(shù)a的取值范圍.

解答 解:若f(x)存在零點,
則方程log2(a-2x)=1-x有根
即21-x=a-2x有根,
令2x=t(t>0)
則原方程等價于$\frac{2}{t}$=a-t有正根
即t2-at+2=0有正根,
根據(jù)根與系數(shù)的關系t1t2=2>0,
即若方程有正根,必有兩正根,
故有$\left\{\begin{array}{l}{{t}_{1}+{t}_{2}=a>0}\\{{a}^{2}-8≥0}\end{array}\right.$,∴a≥2$\sqrt{2}$.
故答案為:$a≥2\sqrt{2}$.

點評 本題考查的知識點是函數(shù)零點的判定定理,其中根據(jù)指數(shù)方程和對數(shù)方程的解法,將函數(shù)對應的方程轉化為一個二次方程是解答的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

8.在直三棱柱ABC-A1B1C1中,AC=4,CB=2,AA1=2,∠ACB=60°,E、F分別是A1C1,BC的中點.
(1)證明:AB⊥平面BB1C1C;
(2)設P是BE的中點,求三棱錐P-B1C1F的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知數(shù)列{an}的前n項和Sn=k(3n-1),且a3=27.
(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列{nan}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.設x,y滿足約束條件$\left\{\begin{array}{l}{3x-y-6≤0}\\{x-y+2≥0}\\{x,y≥0}\end{array}\right.$,若目標函數(shù)z=ax+by(a>0,b>0)的最大值為6,求$\frac{4}{a}$+$\frac{6}$的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.已知f(x)=ax3+bx+9(a,b∈R),且f(-2016)=7,則f(2016)=11.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.若a<b<0,則下列不等式成立的是( 。
A.ac>bcB.$\frac{a}$>1C.|a|>|b|D.($\frac{1}{2}$)a<($\frac{1}{2}$)b

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.某射手進行一次射擊,射中環(huán)數(shù)及相應的概率如下表
環(huán)數(shù)109877以下
概率0.250.30.20.15N
(1)根據(jù)上表求N的值(2)該射手射擊一次射中的環(huán)數(shù)小于8環(huán)的概率
(3)該射手射擊一次至少射中8環(huán)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.數(shù)列{an}的通項公式an=$\frac{1}{\sqrt{n}+\sqrt{n+1}}$,則該數(shù)列的前8項之和等于2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.知曲線C的極坐標方程為3ρsinθ+2ρcosθ=2,曲線C1:$\left\{\begin{array}{l}x=1+3cosα\\ y=2sinα\end{array}\right.(α$為參數(shù)).
(1)求曲線C,C1的普通方程;
(2)若點M在曲線C1上運動,試求出M到曲線C的距離的范圍.

查看答案和解析>>

同步練習冊答案