函數(shù)的單調(diào)遞減區(qū)間為_(kāi)_______

 

【答案】

(-2,0),(0,2)

【解析】

試題分析:根據(jù)題意,由于,那么可知,那么當(dāng)f’(x)><0,則可知為-2<x<2時(shí),則函數(shù)遞減,同時(shí)x不能為零可知單調(diào)減區(qū)間為(-2,0),(0,2)。

考點(diǎn):函數(shù)單調(diào)性

點(diǎn)評(píng):主要是考查了利用導(dǎo)數(shù)求解函數(shù)單調(diào)區(qū)間的運(yùn)用,屬于基礎(chǔ)題。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

12、函數(shù)y=loga(x2+2x-3),當(dāng)x=2時(shí)y>0,則此函數(shù)的單調(diào)遞減區(qū)間為
(-∞,-3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

19、已知函數(shù)y=f(x)(x∈R)在任一點(diǎn)(x0,f(x0))處的切線(xiàn)斜率為k=(x0-2)(x0+1)2,則該函數(shù)的單調(diào)遞減區(qū)間為
(-∞,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=f(x)上任一點(diǎn)(x0,f(x0))處的切線(xiàn)斜率k=(x0-3)(x0+1)2,則該函數(shù)的單調(diào)遞減區(qū)間為
(-∞,3)
(-∞,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年江蘇省啟東中學(xué)高二下學(xué)期期中考試文科數(shù)學(xué)試卷(帶解析) 題型:填空題

已知函數(shù)上任一點(diǎn)處的切線(xiàn)斜率,則該函數(shù)的單調(diào)遞減區(qū)間為         

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆湖南省上學(xué)期高二期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:填空題

函數(shù)的單調(diào)遞減區(qū)間為_(kāi)___________,增區(qū)間為_(kāi)______________.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案