18.已知點(diǎn)A是拋物線M:y2=2px(p>0)與圓C:x2+(y-4)2=a2在第一象限的公共點(diǎn),且點(diǎn)A到拋物線M焦點(diǎn)F的距離為a,若拋物線M上一動(dòng)點(diǎn)到其準(zhǔn)線與到點(diǎn)C的距離之和的最小值為2a,O為坐標(biāo)原點(diǎn),則直線OA被圓C所截得的弦長(zhǎng)為( 。
A.2B.2$\sqrt{3}$C.$\frac{7\sqrt{2}}{3}$D.$\frac{7\sqrt{2}}{6}$

分析 求得圓的圓心和半徑,運(yùn)用拋物線的定義可得A,C,F(xiàn)三點(diǎn)共線時(shí)取得最小值,且有A為CF的中點(diǎn),設(shè)出A,C,F(xiàn)的坐標(biāo),代入拋物線的方程可得p,由拋物線的定義可得a,求得C到直線OA的距離,運(yùn)用圓的弦長(zhǎng)公式計(jì)算即可得到所求值.

解答 解:圓C:x2+(y-4)2=a2的圓心C(0,4),半徑為a,
|AC|+|AF|=2a,
由拋物線M上一動(dòng)點(diǎn)到其準(zhǔn)線與到點(diǎn)C的距離之和的最小值為2a,
由拋物線的定義可得動(dòng)點(diǎn)到焦點(diǎn)與到點(diǎn)C的距離之和的最小值為2a,
可得A,C,F(xiàn)三點(diǎn)共線時(shí)取得最小值,且有A為CF的中點(diǎn),
由C(0,4),F(xiàn)($\frac{p}{2}$,0),可得A($\frac{p}{4}$,2),
代入拋物線的方程可得,4=2p•$\frac{p}{4}$,解得p=2$\sqrt{2}$,
即有a=$\frac{p}{4}$+$\frac{p}{2}$=$\frac{3\sqrt{2}}{2}$,A($\frac{\sqrt{2}}{2}$,2),
可得C到直線OA:y=2$\sqrt{2}$x的距離為d=$\frac{|0-4|}{\sqrt{8+1}}$=$\frac{4}{3}$,
可得直線OA被圓C所截得的弦長(zhǎng)為2$\sqrt{(\frac{3\sqrt{2}}{2})^{2}-(\frac{4}{3})^{2}}$=$\frac{7\sqrt{2}}{3}$.
故選:C.

點(diǎn)評(píng) 本題考查圓的弦長(zhǎng)的求法,注意運(yùn)用拋物線的定義和三點(diǎn)共線和最小,同時(shí)考查弦長(zhǎng)公式和點(diǎn)到直線的距離公式的運(yùn)用,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.如圖所示是南京青奧會(huì)傳遞火炬時(shí),火炬離主會(huì)場(chǎng)距離(y)與傳遞時(shí)間(x)之間的函數(shù)關(guān)系的圖象,若用黑點(diǎn)表示主會(huì)場(chǎng)的位置,則火炬?zhèn)鬟f的路線可能是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.“如果b⇒c,a⇒b,則a⇒c”這種推理規(guī)則叫做演繹推理.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)過(guò)點(diǎn)P(1,$\frac{3}{2}$),其離心率為$\frac{1}{2}$.
(1)求橢圓C的方程;
(2)設(shè)橢圓C的右頂點(diǎn)為A,直線l交C于兩點(diǎn)M、N(異于點(diǎn)A),且AM⊥AN,證明直線l過(guò)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知拋物線C:y2=4x,圓F:(x-1)2+y2=1,過(guò)點(diǎn)(1,0)的直線l與拋物線C及圓F交于四點(diǎn),從上到下依次為A、B、C、D,若|AB|=3,則|CD|=( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{\sqrt{3}}{3}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.用分析法證明:當(dāng)x≥4時(shí),$\sqrt{x-3}$+$\sqrt{x-2}$>$\sqrt{x-4}$+$\sqrt{x-1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.某校為了解一段時(shí)間內(nèi)學(xué)生“學(xué)習(xí)習(xí)慣養(yǎng)成教育”情況,隨機(jī)抽取了100名學(xué)生進(jìn)行測(cè)試,用“十分制”記錄他們的測(cè)試成績(jī),若所得分?jǐn)?shù)不低于8分,則稱該學(xué)生“學(xué)習(xí)習(xí)慣良好”,學(xué)生得分情況統(tǒng)計(jì)如表:
 分?jǐn)?shù)[6.0,7.0)[7.0,8.0)[8.0,9.0)[9.0,10.0]
 頻數(shù) 1015  5025 
(1)請(qǐng)?jiān)诖痤}卡上完成學(xué)生得分的頻率分布直方圖,并估計(jì)學(xué)生得分的平均分$\overline{x}$(同一組中的數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表);
(2)若用樣本去估計(jì)總體的分布,請(qǐng)對(duì)本次“學(xué)習(xí)習(xí)慣養(yǎng)成教育活動(dòng)”作出評(píng)價(jià).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知${\overrightarrow e_1}$和${\overrightarrow e_2}$是表示平面內(nèi)所有向量的一組基底,那么下面四組向量中不能作為一組基底的是( 。
A.${\overrightarrow e_1}$和 ${\overrightarrow e_1}$+${\overrightarrow e_2}$B.${\overrightarrow e_1}$-2${\overrightarrow e_2}$和${\overrightarrow e_1}$-${\overrightarrow e_2}$
C.${\overrightarrow e_1}$+${\overrightarrow e_2}$和${\overrightarrow e_1}$-${\overrightarrow e_2}$D.2${\overrightarrow e_1}$-${\overrightarrow e_2}$和$\frac{1}{2}$${\overrightarrow e_2}$-${\overrightarrow e_1}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知函數(shù)f(x)=sinωx•cosωx+$\sqrt{3}$cos2ωx-$\frac{\sqrt{3}}{2}$(ω>0),直線x=x1,x=x2是y=f(x)圖象的任意兩條對(duì)稱軸,且|x1-x2|的最小值為$\frac{π}{4}$,若關(guān)于x的方程f(x)+k=0在區(qū)間[0,$\frac{π}{4}$]上有兩個(gè)不同的實(shí)數(shù)解,則實(shí)數(shù)k的取值范圍為( 。
A.(-1,1)B.($\frac{\sqrt{3}}{2}$,1)C.(-1,-$\frac{\sqrt{3}}{2}$]D.(-1,$\frac{\sqrt{3}}{2}$]

查看答案和解析>>

同步練習(xí)冊(cè)答案