【題目】已知數(shù)列滿足,,其中是等差數(shù)列,且,則________

【答案】2018

【解析】

數(shù)列{an}{bn}滿足bnlnan,nN*,其中{bn}是等差數(shù)列,可得bn+1bnlnan+1lnanln常數(shù)t常數(shù)etq0,因此數(shù)列{an}為等比數(shù)列.由,

可得a1a1009a2a1008.再利用對(duì)數(shù)運(yùn)算性質(zhì)即可得出.

解:數(shù)列{an}、{bn}滿足bnlnan,nN*,其中{bn}是等差數(shù)列,

bn+1bnlnan+1lnanln常數(shù)t

常數(shù)etq0,

因此數(shù)列{an}為等比數(shù)列.

,

a1a1009a2a1008

b1+b2++b1009lna1a2a1009lne20182018

故答案為:2018

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下面有五個(gè)命題:

①函數(shù)的最小正周期是;

②終邊在軸上的角的集合是;

③在同一坐標(biāo)系中,函數(shù)的圖象和函數(shù)的圖象有三個(gè)公共點(diǎn);

④把函數(shù)的圖象向右平移個(gè)單位得到的圖象;

⑤函數(shù)上是減函數(shù);

其中真命題的序號(hào)是( 。

A.①②⑤B.①④C.③⑤D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某游戲棋盤上標(biāo)有第、、站,棋子開始位于第站,選手拋擲均勻硬幣進(jìn)行游戲,若擲出正面,棋子向前跳出一站;若擲出反面,棋子向前跳出兩站,直到跳到第站或第站時(shí),游戲結(jié)束.設(shè)游戲過程中棋子出現(xiàn)在第站的概率為.

1)當(dāng)游戲開始時(shí),若拋擲均勻硬幣次后,求棋子所走站數(shù)之和的分布列與數(shù)學(xué)期望;

2)證明:;

3)若最終棋子落在第站,則記選手落敗,若最終棋子落在第站,則記選手獲勝.請(qǐng)分析這個(gè)游戲是否公平.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于函數(shù)的對(duì)稱性有如下結(jié)論:對(duì)于給定的函數(shù),如果對(duì)于任意的都有成立為常數(shù)),則函數(shù)關(guān)于點(diǎn)對(duì)稱.

(1)用題設(shè)中的結(jié)論證明:函數(shù)關(guān)于點(diǎn);

(2)若函數(shù)既關(guān)于點(diǎn)對(duì)稱,又關(guān)于點(diǎn)對(duì)稱,且當(dāng)時(shí),,求:的值;

當(dāng)時(shí),的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修44:極坐標(biāo)與參數(shù)方程

已知在平面直角坐標(biāo)系xOy,O為坐標(biāo)原點(diǎn),曲線C (α為參數(shù)),在以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),x軸的正半軸為極軸,取相同單位長(zhǎng)度的極坐標(biāo)系,直線lρ.

()求曲線C的普通方程和直線l的直角坐標(biāo)方程;

()曲線C上恰好存在三個(gè)不同的點(diǎn)到直線l的距離相等,分別求出這三個(gè)點(diǎn)的極坐標(biāo)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的值域是,有下列結(jié)論:①當(dāng)時(shí),; ②當(dāng)時(shí),;③當(dāng)時(shí),; ④當(dāng)時(shí),.其中結(jié)論正確的所有的序號(hào)是( )

A.①②B.③④C.②③D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】

已知幾何體A—BCED的三視圖如圖所示,其中俯視圖和側(cè)視圖都是腰長(zhǎng)為4的等腰直角三角形,正視圖為直角梯形.

1)求此幾何體的體積V的大;

2)求異面直線DEAB所成角的余弦值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在三棱錐中,OA、OBOC所在直線兩兩垂直,且,CA與平面AOB所成角為,DAB中點(diǎn),三棱錐的體積是

1)求三棱錐的高;

2)在線段CA上取一點(diǎn)E,當(dāng)E在什么位置時(shí),異面直線BEOD所成的角為?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系上,有一點(diǎn)列,設(shè)點(diǎn)的坐標(biāo)),其中 ,,且滿足).

1)已知點(diǎn),點(diǎn)滿足,求的坐標(biāo);

2)已知點(diǎn)),且)是遞增數(shù)列,點(diǎn)在直線上,求

3)若點(diǎn)的坐標(biāo)為,,求的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案