已知f(x)=2+log3x,x∈[1,9],求y=[f(x)]2+f(x2)的最大值及y取最大值時x的值.
分析:由f(x)=2+log3x,x∈[1,9],可得y=[f(x)]2+f(x2)=(log3x)2+6log3x+6,且
1≤x≤9
1≤x2≤9
即1≤x≤3,則t∈[0,1],令t=log3x,則t∈[0,1],從而有y=t2+6t+6=(t+3)2-3,結(jié)合二次函數(shù)的性質(zhì)可求函數(shù)的最大值及取得最大值的x
解答:解:∵f(x)=2+log3x,x∈[1,9],
∴y=[f(x)]2+f(x2)=(2+log3x)2+(2+log3x2
=(log3x)2+6log3x+6,令t=log3x
由題意可得
1≤x≤9
1≤x2≤9
即1≤x≤3,則t∈[0,1]
∴y=t2+6t+6=(t+3)2-3在[0,1]上單調(diào)遞增
當t=1即x=3時,函數(shù)有最大值,ymax=13
點評:本題主要考查了對數(shù)的運算性質(zhì)的應(yīng)用,二次函數(shù)閉區(qū)間上的最值的求解,解答本題時容易漏掉考慮復合函數(shù)的定義域,還把所求的函數(shù)的定義域當作1≤x≤9,而出現(xiàn)最大值為22
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知f (x)、g(x)都是定義在R上的函數(shù),如果存在實數(shù)m、n使得h (x)=m f(x)+ng(x),那么稱h (x)為f (x)、g(x)在R上生成的一個函數(shù).設(shè)f (x)=x2+ax,g(x)=x+b(a,b∈R),l(x)=2x2+3x-1,h (x)為f (x)、g(x)在R上生成的一個二次函數(shù).
(Ⅰ)設(shè)a=1,b=2,若h (x)為偶函數(shù),求h(
2
)
;
(Ⅱ)設(shè)b>0,若h (x)同時也是g(x)、l(x)在R上生成的一個函數(shù),求a+b的最小值;
(Ⅲ)試判斷h(x)能否為任意的一個二次函數(shù),并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=lnx,g(x)=
1
2
x2+mx+
7
2
,(m<0)
,直線l與函數(shù)f(x)、g(x)的圖象都相切,且與f(x)圖象的切點為(1,f(x)),則m=(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

有下列命題:
①f(x)=ax-l+1(a>0,且a≠1)的圖象恒過定點(1,2);
②已知f(x)=
(
1
2
)x,x>3
f(x+1),x≤3
則f(log25)=
1
10

sin(π-α)cos(-α)cos(
2
-α)
cos(
π
2
+α)sin(-π-α)
=cosα

其中正確命題的個數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

本題共有(1)、(2)、(3)三個選答題,每題7分,請考生任選2題作答,滿分14分.如果多做,則以所做的前2題計分.作答時,先用2B鉛筆在答題卡上把所選題目對應(yīng)的題號涂黑,并將所選題號填入括號中.
(1)選修4-2:矩陣與變換
變換T1是逆時針旋轉(zhuǎn)90°的旋轉(zhuǎn)變換,對應(yīng)的變換矩陣為M1,變換T2對應(yīng)的變換矩陣是M2=
11
01
;
(I)求點P(2,1)在T1作用下的點Q的坐標;
(II)求函數(shù)y=x2的圖象依次在T1,T2變換的作用下所得的曲線方程.
(2)選修4-4:極坐標系與參數(shù)方程
從極點O作一直線與直線l:ρcosθ=4相交于M,在OM上取一點P,使得OM•OP=12.
(Ⅰ)求動點P的極坐標方程;
(Ⅱ)設(shè)R為l上的任意一點,試求RP的最小值.
(3)選修4-5:不等式選講
已知f(x)=|6x+a|.
(Ⅰ)若不等式f(x)≥4的解集為{x|x≥
1
2
或x≤-
5
6
}
,求實數(shù)a的值;
(Ⅱ)在(Ⅰ)的條件下,若f(x)+f(x-1)>b對一切實數(shù)x恒成立,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=|x+l|+|x-2|,g(x)=|x+l|-|x-a|+a(a∈R).
(Ⅰ)解不等式f(x)≤5;
(Ⅱ)若不等式f(x)≥g(x)恒成立,求a的取值范圍.

查看答案和解析>>

同步練習冊答案