【題目】若函數(shù)在區(qū)間上遞減,則a的取值范圍是______.
【答案】
【解析】
由題意,在區(qū)間(﹣∞,1]上,a的取值需令真數(shù)x2﹣2ax+1+a>0,且函數(shù)u=x2﹣2ax+1+a在區(qū)間(﹣∞,1]上應(yīng)單調(diào)遞減,這樣復(fù)合函數(shù)才能單調(diào)遞減.
令u=x2﹣2ax+1+a,則f(u)=lgu,
配方得u=x2﹣2ax+1+a=(x﹣a)2 ﹣a2+a+1,故對稱軸為x=a,如圖所示:
由圖象可知,當(dāng)對稱軸a≥1時(shí),u=x2﹣2ax+1+a在區(qū)間(﹣∞,1]上單調(diào)遞減,
又真數(shù)x2﹣2ax+1+a>0,二次函數(shù)u=x2﹣2ax+1+a在(﹣∞,1]上單調(diào)遞減,
故只需當(dāng)x=1時(shí),若x2﹣2ax+1+a>0,
則x∈(﹣∞,1]時(shí),真數(shù)x2﹣2ax+1+a>0,
代入x=1解得a<2,所以a的取值范圍是[1,2)
故答案為:
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),當(dāng)點(diǎn)在的圖像上移動(dòng)時(shí),點(diǎn)在函數(shù)的圖像上移動(dòng),
(1)若點(diǎn)的坐標(biāo)為,點(diǎn)也在圖像上,求的值。
(2)求函數(shù)的解析式。
(3)當(dāng),令,求在上的最值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知奇函數(shù)的定義域?yàn)閇-1,1],當(dāng)時(shí),。
(1)求函數(shù)在上的值域;
(2)若時(shí),函數(shù)的最小值為-2,求實(shí)數(shù)λ的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(10分)四面體ABCD及其三視圖如圖所示,平行于棱AD,BC的平面分別交四面體的棱AB,BD,DC,CA于點(diǎn)E,F,G,H.
(1)求四面體ABCD的體積;
(2)證明:四邊形EFGH是矩形.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,點(diǎn)E為棱PC的中點(diǎn).
(1)證明:BE⊥DC;
(2)求直線BE與平面PBD所成角的正弦值;
(3)若F為棱PC上一點(diǎn),滿足BF⊥AC,求二面角F﹣AB﹣P的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),.
(1)當(dāng)時(shí),函數(shù),在處的切線互相垂直,求的值;
(2)當(dāng)函數(shù)在定義域內(nèi)不單調(diào)時(shí),求證:;
(3)是否存在實(shí)數(shù),使得對任意,都有函數(shù)的圖象在的圖象的下方?若存在,請求出最大整數(shù)的值;若不存在,請說理由.(參考數(shù)據(jù):,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列命題:
①存在實(shí)數(shù),使; ②函數(shù)是偶函數(shù);
③若是第一象限的角,且,則;
④直線是函數(shù)的一條對稱軸;
⑤函數(shù)的圖像關(guān)于點(diǎn)成對稱中心圖形.
其中正確命題的序號是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知甲、乙兩個(gè)旅游景點(diǎn)之間有一條5km的直線型水路,一艘游輪以的速度航行時(shí)考慮到航線安全要求,每小時(shí)使用的燃料費(fèi)用為萬元為常數(shù),且,其他費(fèi)用為每小時(shí)萬元.
若游輪以的速度航行時(shí),每小時(shí)使用的燃料費(fèi)用為萬元,要使每小時(shí)的所有費(fèi)用不超過萬元,求x的取值范圍;
求該游輪單程航行所需總費(fèi)用的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),(其中)的圖象與x軸的交點(diǎn)中,相鄰兩個(gè)交點(diǎn)之間的距離為,且圖象上一個(gè)最低點(diǎn)為.
(Ⅰ)求的解析式;
(Ⅱ)當(dāng),求的值域.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com