圓C的方程為x2+y2-8x+15=0.若直線y=kx-2上至少存在一點(diǎn),使得以該點(diǎn)為圓心,1為半徑的圓與圓C有公共點(diǎn),則k的最大值是(  )
分析:圓C化成標(biāo)準(zhǔn)方程,得圓心為C(4,0)且半徑r=1,根據(jù)題意可得C到直線y=kx-2的距離小于或等于2,利用點(diǎn)到直線的距離公式建立關(guān)于k的不等式,解之得0≤k≤
4
3
,即可得到k的最大值.
解答:解:∵圓C的方程為x2+y2-8x+15=0,
∴整理得:(x-4)2+y2=1,可得圓心為C(4,0),半徑r=1.
又∵直線y=kx-2上至少存在一點(diǎn),使得以該點(diǎn)為圓心,1為半徑的圓與圓C有公共點(diǎn),
∴點(diǎn)C到直線y=kx-2的距離小于或等于2,可得
|4k-0-2|
k2+1
≤2
,
化簡得:3k2-4k≤0,解之得0≤k≤
4
3
,可得k的最大值是
4
3

故選:B
點(diǎn)評(píng):本題給出定圓與經(jīng)過定點(diǎn)的直線,當(dāng)直線與圓有公共點(diǎn)時(shí)求參數(shù)k的取值范圍,著重考查了圓的標(biāo)準(zhǔn)方程、點(diǎn)到直線的距離公式和直線與圓的位置關(guān)系等知識(shí),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)A(x1,y1),B(x2,y2)(x1x2≠0)是拋物線y2=2px(p>0)上的兩個(gè)動(dòng)點(diǎn),O是坐標(biāo)原點(diǎn),向量
OA
OB
滿足|
OA
+
OB
|=|
OA
-
OB
|
,設(shè)圓C的方程為x2+y2-(x1+x2)x-(y1+y2)y=0.
(1)證明線段AB是圓C的直徑;
(2)當(dāng)圓C的圓心到直線x-2y=0的距離的最小值為
2
5
5
時(shí),求p的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•浙江二模)在平面直角坐標(biāo)系xOy中,圓C的方程為x2+y2-8x+15=0,若直線y=kx-2上至少存在一點(diǎn),使得以該點(diǎn)為圓心,1為半徑的圓與圓C有公共點(diǎn),則k的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C與圓(x-1)2+y2=1關(guān)于直線y=-x對(duì)稱,則圓C的方程為
x2+(y+1)2=1
x2+(y+1)2=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•石家莊二模)在平面直角坐標(biāo)系xoy中,圓C的方程為x2+y2-8x+15=0,若直線y=kx-2上至少存在一點(diǎn),使得以該點(diǎn)為圓心,1為半徑的圓與圓C有公共點(diǎn),則實(shí)數(shù)k的最大值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C的方程為x2+(y-4)2=4,點(diǎn)O是坐標(biāo)原點(diǎn).直線l:y=kx與圓C交于M,N兩點(diǎn).

(1)求k的取值范圍.

(2)設(shè)Q(m,n)是線段MN上的點(diǎn),且=+.請(qǐng)將n表示為m的函數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案