(2012•吉林二模)已知直線y=k(x+1)(k>0)與拋物線C:y2=4x相交于A、B兩點,F(xiàn)為拋物線C的焦點,若|FA|=2|FB|,則k=( 。
分析:根據(jù)直線方程可知直線恒過定點,過A、B分別作AM⊥l于M,BN⊥l于N,根據(jù)|FA|=2|FB|,推斷出|AM|=2|BN|,點B為AP的中點、連接OB,進而可知|OB|=
1
2
|AF|,由此求得點B的橫坐標,則點B的坐標可得,最后利用直線上的兩點求得直線的斜率.
解答:解:拋物線C:y2=4x的準線為l:x=-1,直線y=k(x+1)(k>0)恒過定點P(-1,0),
如圖過A、B分別作AM⊥l于M,BN⊥l于N,

由|FA|=2|FB|,則|AM|=2|BN|,點B為AP的中點、連接OB,則|OB|=
1
2
|AF|,
∴|OB|=|BF|,點B的橫坐標為
1
2

故點B的坐標為(
1
2
,
2

∵P(-1,0),
∴k=
2
-0
1
2
+1
=
2
2
3

故選B.
點評:本題主要考查了拋物線的簡單性質(zhì),考查拋物線的定義,考查直線斜率的計算,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2012•吉林二模)設函數(shù)f(x)=
1-a
2
x2+ax-lnx(a∈R)

(Ⅰ) 當a=1時,求函數(shù)f(x)的極值;
(Ⅱ)當a>1時,討論函數(shù)f(x)的單調(diào)性.
(Ⅲ)若對任意a∈(3,4)及任意x1,x2∈[1,2],恒有
(a2-1)
2
m+ln2>|f(x1)-f(x2)|
成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•吉林二模)設集合A={x|0≤x<1},B={x|1≤x≤2},函數(shù)f(x)=
2x,(x∈A)
4-2x,(x∈B)
,x0∈A且f[f(x0)]∈A,則x0的取值范圍是
log2
3
2
,1
log2
3
2
,1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•吉林二模)設函數(shù)f(x)=
1-a2
x2+ax-lnx (a∈R)
(Ⅰ)當a=1時,求函數(shù)f(x)的極值;
(Ⅱ)當a>1時,討論函數(shù)f(x)的單調(diào)性.
(Ⅲ)若對任意a∈(2,3)及任意x1,x2∈[1,2],恒有ma+ln2>|f(x1)-f(x2)|成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•吉林二模)△ABC內(nèi)角A,B,C的對邊分別是a,b,c,若c=2
3
b
,sin2A-sin2B=
3
sinBsinC
,則A=
π
6
π
6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•吉林二模)執(zhí)行程序框圖,若輸出的結(jié)果是
15
16
,則輸入的a為( 。

查看答案和解析>>

同步練習冊答案