在正三棱柱ABC-A1B1C1中,若BB1=1,AB=,求AB1與C1B所成角的大小。

900

解析試題分析:

∴直線AB1與C1B所成角為900
考點:異面直線所成的角
點評:解決異面直線所成的角的關(guān)鍵是根據(jù)平移法得到三角形,進而解三角形得到,屬于基礎(chǔ)題。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,四邊形為矩形,平面上的點,且平面.

(1)求三棱錐的體積;
(2)設(shè)在線段上,且滿足,試在線段上確定一點,使得平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知三棱柱,底面三角形為正三角形,側(cè)棱底面,,的中點,中點.

(Ⅰ)求證:直線平面;
(Ⅱ)求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖.在直棱柱ABC-A1B1C1中,∠ BAC=90°,AB=AC=,AA1=3,D是BC的中點,點E在菱BB1上運動。

(1)證明:AD⊥C1E;
(2)當(dāng)異面直線AC,C1E 所成的角為60°時,求三棱錐C1-A1B1E的體積

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖(1),在等腰直角三角形中,,點分別為線段的中點,將分別沿折起,使二面角和二面角都成直二面角,如圖(2)所示。

(1)求證:;
(2)求平面與平面所成的銳二面角的余弦值;
(3)求點到平面的距離。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(文科)長方體中,,,是底面對角線的交點.

(Ⅰ) 求證:平面;
(Ⅱ) 求證:平面;
(Ⅲ) 求三棱錐的體積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)如圖是從上下底面處在水平狀態(tài)下的棱長為的正方體中分離出來的:

(1)試判斷是否在平面內(nèi);(回答是與否)
(2)求異面直線所成的角;
(3)如果用圖示中這樣一個裝置來盛水,那么最多可以盛多少體積

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
如圖所示,在直棱柱中,,的中點.

(1)求證:;
(2)求證:;
(3)在上是否存在一點,使得,若存在,試確定的位置,并判斷與平面是否垂直?若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在長方體中,,且

(I)求證:對任意,總有;
(II)若,求二面角的余弦值;
(III)是否存在,使得在平面上的射影平分?若存在, 求出的值, 若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案