【題目】在平面直角坐標(biāo)系中,已知曲線的參數(shù)方程為,以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

(1)求曲線與曲線兩交點(diǎn)所在直線的極坐標(biāo)方程;

(2)若直線的極坐標(biāo)方程為,直線軸的交點(diǎn)為,與曲線相交于兩點(diǎn),求的值.

【答案】(1);(2)

【解析】

(1)先將化為普通方程,可知是兩個(gè)圓,由圓心的距離判斷出兩者相交,進(jìn)而得相交直線的普通方程,再化成極坐標(biāo)方程即可;(2)先求出l的普通方程有,點(diǎn),寫出直線l的參數(shù)方程,代入曲線,設(shè)交點(diǎn)兩點(diǎn)的參數(shù)為,根據(jù)韋達(dá)定理可得,進(jìn)而求得的值。

(1) 曲線的普通方程為:

曲線的普通方程為:,即

由兩圓心的距離,所以兩圓相交,

所以兩方程相減可得交線為,即.

所以直線的極坐標(biāo)方程為.

(2) 直線的直角坐標(biāo)方程:,則與軸的交點(diǎn)為

直線的參數(shù)方程為,帶入曲線.

設(shè)兩點(diǎn)的參數(shù)為,

所以,,所以,同號(hào).

所以

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè),。

(1)求的單調(diào)區(qū)間;

(2)討論零點(diǎn)的個(gè)數(shù);

(3)當(dāng)時(shí),設(shè)恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2019年2月13日《煙臺(tái)市全民閱讀促進(jìn)條例》全文發(fā)布,旨在保障全民閱讀權(quán)利,培養(yǎng)全民閱讀習(xí)慣,提高全民閱讀能力,推動(dòng)文明城市和文化強(qiáng)市建設(shè).某高校為了解條例發(fā)布以來(lái)全校學(xué)生的閱讀情況,隨機(jī)調(diào)查了200名學(xué)生每周閱讀時(shí)間(單位:小時(shí))并繪制如圖所示的頻率分布直方圖.

(1)求這200名學(xué)生每周閱讀時(shí)間的樣本平均數(shù)和中位數(shù)的值精確到0.01);

(2)為查找影響學(xué)生閱讀時(shí)間的因素,學(xué)校團(tuán)委決定從每周閱讀時(shí)間為的學(xué)生中抽取9名參加座談會(huì).

(i)你認(rèn)為9個(gè)名額應(yīng)該怎么分配?并說(shuō)明理由;

(ii)座談中發(fā)現(xiàn)9名學(xué)生中理工類專業(yè)的較多.請(qǐng)根據(jù)200名學(xué)生的調(diào)研數(shù)據(jù),填寫下面的列聯(lián)表,并判斷是否有的把握認(rèn)為學(xué)生閱讀時(shí)間不足(每周閱讀時(shí)間不足8.5小時(shí))與“是否理工類專業(yè)”有關(guān)?

閱讀時(shí)間不足8.5小時(shí)

閱讀時(shí)間超過(guò)8.5小時(shí)

理工類專業(yè)

40

60

非理工類專業(yè)

附:).

臨界值表:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

<>

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,平面平面,,,,,的中點(diǎn).

(1)求證:平面;

(2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)當(dāng),求的單調(diào)區(qū)間;

(2)若有兩個(gè)零點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】“霧霾治理”“延遲退休”“里約奧運(yùn)”“量子衛(wèi)星”“神舟十一號(hào)”成為現(xiàn)在社會(huì)關(guān)注的個(gè)熱點(diǎn).小王想利用暑假時(shí)間調(diào)查一下社會(huì)公眾對(duì)這些熱點(diǎn)的關(guān)注度.若小王準(zhǔn)備按照順序分別調(diào)査其中的個(gè)熱點(diǎn),則“量子衛(wèi)星”作為其中的一個(gè)調(diào)查熱點(diǎn),但不作為第一個(gè)調(diào)查熱點(diǎn)的種數(shù)為______

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】改革開(kāi)放以來(lái),我國(guó)農(nóng)村7億多貧困人口擺脫貧困,貧困發(fā)生率由1978年的下降到2018年底的,創(chuàng)造了人類減貧史上的中國(guó)奇跡,為全球減貧事業(yè)貢獻(xiàn)了中國(guó)智慧和中國(guó)方案.“貧困發(fā)生率”是指低于貧困線的人口占全體人口的比例.2012年至2018年我國(guó)貧困發(fā)生率的數(shù)據(jù)如表:

年份(

2012

2013

2014

2015

2016

2017

2018

貧困發(fā)生率

10.2

8.5

7.2

5.7

4.5

3.1

1.4

(1)從表中所給的7個(gè)貧困發(fā)生率數(shù)據(jù)中任選兩個(gè),求兩個(gè)都低于的概率;

(2)設(shè)年份代碼,利用回歸方程,分析2012年至2018年貧困發(fā)生率的變化情況,并預(yù)測(cè)2019年的貧困發(fā)生率.

附:回歸直線的斜率和截距的最小二乘估計(jì)公式為:,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,圓的參數(shù)方程為為參數(shù)).在極坐標(biāo)系(與平面直角坐標(biāo)系取相同的長(zhǎng)度單位,且以原點(diǎn)為極點(diǎn),以軸非負(fù)半軸為極軸)中,直線的方程為.

1)求圓的普通方程及直線的直角坐標(biāo)方程;

2)設(shè)直線與圓相交于、兩點(diǎn),與軸交于點(diǎn),求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著節(jié)能減排意識(shí)深入人心以及共享單車在饒城的大范圍推廣,越來(lái)越多的市民在出行時(shí)喜歡選擇騎行共享單車。為了研究廣大市民在共享單車上的使用情況,某公司在我市隨機(jī)抽取了100名用戶進(jìn)行調(diào)查,得到如下數(shù)據(jù):

每周使用次數(shù)

1次

2次

3次

4次

5次

6次及以上

4

3

3

7

8

30

6

5

4

4

6

20

合計(jì)

10

8

7

11

14

50

(1)如果認(rèn)為每周使用超過(guò)3次的用戶為“喜歡騎行共享單車”,請(qǐng)完成列表(見(jiàn)答題卡),并判斷能否在犯錯(cuò)誤概率不超過(guò)0.05的前提下,認(rèn)為是否“喜歡騎行共享單車”與性別有關(guān)?

(2)每周騎行共享單車6次及6次以上的用戶稱為“騎行達(dá)人”,視頻率為概率,在我市所有“騎行達(dá)人”中,隨機(jī)抽取4名用戶.

① 求抽取的4名用戶中,既有男生“騎行達(dá)人”又有女“騎行達(dá)人”的概率;

②為了鼓勵(lì)女性用戶使用共享單車,對(duì)抽出的女“騎行達(dá)人”每人獎(jiǎng)勵(lì)500元,記獎(jiǎng)勵(lì)總金額為,求的分布列及數(shù)學(xué)期望.

附表及公式:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

同步練習(xí)冊(cè)答案