已知數(shù)列{an}滿(mǎn)足a1=0,an+1+Sn=n2+2n(n∈N*),其中Sn為{an}的前n項(xiàng)和,則此數(shù)列的通項(xiàng)公式為
an=
0,n=1
2n-1,n≥2
an=
0,n=1
2n-1,n≥2
分析:由an+1+Sn=n2+2n①,得an+Sn-1=(n-1)2+2(n-1)(n≥2)②,由①-②可求得an+1,進(jìn)而求得an,注意n的取值范圍驗(yàn)證a1,a2
解答:解:由an+1+Sn=n2+2n①,得an+Sn-1=(n-1)2+2(n-1)(n≥2)②,
①-②得,an+1=2n+1(n≥2),an=2n-1(n≥3),
又a1=0,a2=3,
所以an=
0,n=1
2n-1,n≥2

故答案為:an=
0,n=1
2n-1,n≥2
點(diǎn)評(píng):本題考查數(shù)列遞推式及數(shù)列通項(xiàng)公式的求解,正確理解an與Sn間的關(guān)系是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿(mǎn)足:a1=1且an+1=
3+4an
12-4an
, n∈N*

(1)若數(shù)列{bn}滿(mǎn)足:bn=
1
an-
1
2
(n∈N*)
,試證明數(shù)列bn-1是等比數(shù)列;
(2)求數(shù)列{anbn}的前n項(xiàng)和Sn;
(3)數(shù)列{an-bn}是否存在最大項(xiàng),如果存在求出,若不存在說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿(mǎn)足
1
2
a1+
1
22
a2+
1
23
a3+…+
1
2n
an=2n+1
則{an}的通項(xiàng)公式
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿(mǎn)足:a1=
3
2
,且an=
3nan-1
2an-1+n-1
(n≥2,n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)證明:對(duì)于一切正整數(shù)n,不等式a1•a2•…an<2•n!

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿(mǎn)足an+1=|an-1|(n∈N*
(1)若a1=
54
,求an
(2)若a1=a∈(k,k+1),(k∈N*),求{an}的前3k項(xiàng)的和S3k(用k,a表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•北京模擬)已知數(shù)列{an}滿(mǎn)足an+1=an+2,且a1=1,那么它的通項(xiàng)公式an等于
2n-1
2n-1

查看答案和解析>>

同步練習(xí)冊(cè)答案