8.函數(shù)y=sin(x2)的圖象大致是( 。
A.B.C.D.

分析 先判斷函數(shù)的奇偶性,再根據(jù)特殊值即可排除.

解答 解:因?yàn)閥=f(-x)=sin(-x)2=sin(x2)=f(x),
所以y=f(x)為偶函數(shù),
所以函數(shù)y=f(x)關(guān)于y軸對(duì)稱(chēng),故排除A,C
當(dāng)x=$\sqrt{π}$時(shí),y=0,故排除B,
故選:D

點(diǎn)評(píng) 本題考查了函數(shù)圖象的識(shí)別,關(guān)鍵是掌握函數(shù)的奇偶性和函數(shù)值得變化趨勢(shì),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.要得到函數(shù)$y=sin(\frac{π}{4}-3x)$的圖象,只需要將函數(shù)y=sin3x的圖象( 。﹎.
A.向右平移$\frac{π}{4}$個(gè)單位B.向左平移$\frac{π}{4}$個(gè)單位
C.向右平移$\frac{π}{12}$個(gè)單位D.向左平移$\frac{π}{12}$個(gè)單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{4}$=1(a>0)的一個(gè)焦點(diǎn)坐標(biāo)為(2$\sqrt{3}$,0)則實(shí)數(shù)a的值為( 。
A.8B.2$\sqrt{2}$C.16D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.若實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{x-y+1≤0}\\{x>0}\\{y≤2}\end{array}\right.$,則$\frac{2y}{2x+1}$的取值范圍是( 。
A.[$\frac{4}{3}$,4]B.[$\frac{4}{3}$,4)C.[2,4]D.(2,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.某校開(kāi)展“讀好書(shū),好讀書(shū)”活動(dòng),要求本學(xué)期每人至少讀一本課外書(shū),該校高一共有100名學(xué)生,他們本學(xué)期讀課外書(shū)的本數(shù)統(tǒng)計(jì)如圖所示.
( I)求高一學(xué)生讀課外書(shū)的人均本數(shù);
(Ⅱ)從高一學(xué)生中任意選兩名學(xué)生,求他們讀課外書(shū)的本數(shù)恰好相等的概率;
(Ⅲ)從高一學(xué)生中任選兩名學(xué)生,用ζ表示這兩人讀課外書(shū)的本數(shù)之差的絕對(duì)值,求隨機(jī)變量ζ的分布列及數(shù)學(xué)期望Eζ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知數(shù)列{an}的前n項(xiàng)和為Sn,對(duì)一切正整數(shù)n,點(diǎn)Pn(n,Sn)都在函數(shù)f(x)=x2+2x的圖象上,且過(guò)點(diǎn)Pn(n,Sn)的切線的斜率為kn
(I)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若bn=$\frac{1}{{a}_{n}•({k}_{n}+1)}$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.如圖,網(wǎng)格紙上小正方形的邊長(zhǎng)為1,粗線畫(huà)出的是某幾何體的三視圖,則該幾何體最長(zhǎng)的棱長(zhǎng)為(  )
A.$4\sqrt{3}$B.$4\sqrt{2}$C.6D.$2\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知x,y∈R,滿足x2+2xy+4y2=6,則z=x+y的取值范圍為( 。
A.[-$\sqrt{2}$,$\sqrt{2}$]B.[-$\sqrt{2}$,$\sqrt{6}$]C.[-$\sqrt{6}$,$\sqrt{6}$]D.[-$\sqrt{6}$,$\sqrt{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.不等式(x-1)(2-x)>0的解集是(1,2).

查看答案和解析>>

同步練習(xí)冊(cè)答案