分析 (Ⅰ)已知等式利用正弦定理化簡(jiǎn),利用兩角和與差的正弦函數(shù)公式及二倍角的正弦函數(shù)公式化簡(jiǎn),再利用誘導(dǎo)公式化簡(jiǎn)求出sinA的值,即可確定出A的度數(shù);
(Ⅱ)表示出所證不等式左右兩邊之差,利用余弦定理及完全平方公式性質(zhì)化簡(jiǎn),判斷差的正負(fù)即可得證;
(Ⅲ)由a=b,得到A=B,求出C的度數(shù),在三角形AMC中,由AM的長(zhǎng)與cosC的值,求出AC的長(zhǎng),利用三角形面積公式求出三角形ABC面積即可.
解答 解:(Ⅰ)∵bcosC+ccosB=2asinA,
∴sinBcosC+sinCcosB=2sinAsinA,
即sin(B+C)=2sinAsinA?sinA=2sinAsinA,
∵sinA>0,∴sinA=$\frac{1}{2}$,
∵a≤b≤c,
∴0<A≤$\frac{π}{3}$,
∴A=$\frac{π}{6}$;
(Ⅱ)∵a2-(2-$\sqrt{3}$)bc=b2+c2-2bccos$\frac{π}{6}$-(2-$\sqrt{3}$)bc=b2+c2-2bc=(b-c)2≥0,
∴a2≥(2-$\sqrt{3}$)bc;
(Ⅲ)由a=b及(Ⅰ)知A=B=$\frac{π}{6}$,
∴C=$\frac{2π}{3}$,
設(shè)AC=x,則MC=$\frac{1}{2}$x,
又AM=$\sqrt{7}$,
在△AMC中,由余弦定理得AC2+MC2-2AC•MCcosC=AM2,
即x2+($\frac{x}{2}$)2-2x•$\frac{x}{2}$•cos120°=7,
解得:x=2,
則S△ABC=$\frac{1}{2}$x2sin$\frac{2π}{3}$=$\sqrt{3}$.
點(diǎn)評(píng) 此題考查了余弦定理,兩角和與差的正弦函數(shù),以及三角形面積公式,熟練掌握定理及公式是解本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {1,4} | B. | {1,4,6} | C. | {2,4,6} | D. | {1,2,4,6} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | a>0,c>1 | B. | a>1,0<c<1 | C. | 0<a<1,0<c<1 | D. | 0<a<1,c>1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{32\sqrt{15}}{15}$,$\frac{8\sqrt{15}}{5}$,$\frac{16\sqrt{15}}{15}$ | B. | $\frac{32}{15}$,$\frac{8}{5}$,$\frac{16}{15}$ | ||
C. | 4,3,2 | D. | 8,6,4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com