11.已知集合A={x∈R|$\frac{1}{8}$<2x<4 },B={x∈R|-2<x≤4},則A∩B等于( 。
A.(-2,2)B.(-2,4)C.($\frac{1}{8}$,2)D.($\frac{1}{8}$,4)

分析 利用指數(shù)函數(shù)的性質(zhì)先求出集合A,再由交集定義求出集合A∩B.

解答 解:∵集合A={x∈R|$\frac{1}{8}$<2x<4 }={x|-3<x<2},B={x∈R|-2<x≤4},
∴A∩B={x|-2<x<2}=(-2,2).
故選:A.

點(diǎn)評(píng) 本題考查交集的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意交集的定義及指數(shù)函數(shù)性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.如圖在△ABC中,D是AC邊上的點(diǎn)且AB=AD,2AB=$\sqrt{3}$BD,BC=2BD.則cosC的值(  )
A.$\frac{\sqrt{6}}{6}$B.$\frac{\sqrt{3}}{6}$C.$\frac{\sqrt{30}}{6}$D.$\frac{\sqrt{6}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=a+xln(x+1)(a∈R).
(1)當(dāng)a=1時(shí),求曲線y=f(x)在x=0處的切線方程;
(2)已知x1∈(-1,0),x2∈(0,+∞),且x1,x2是函數(shù)F(x)=$\frac{f(x)}{x}$的兩個(gè)極值點(diǎn),試證明:?m∈(-1,0),n∈(0,+∞),都有F(m)<F(n)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知$\overrightarrow{a}$=(3,-1),$\overrightarrow$=(-5,5),則$\overrightarrow{a}$•$\overrightarrow$的值為( 。
A.20B.10C.-20D.-10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若圓x2+y2-4x-4y-10=0上至少有三個(gè)不同點(diǎn)到直線l:x-y+b=0的距離為2$\sqrt{2}$,則b的取值范圍是[-2,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.不等式(x-1)(x-2)≤0的解集是[1,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.(1)解不等式|x+1|+2|x-1|<3x+5
(2)已知a,b∈[0,1],求ab+(1-a-b)(a+b)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.如圖,網(wǎng)格紙上小正方形的邊長(zhǎng)為$\frac{1}{2}$,粗線畫出的是某幾何體的三視圖,則該幾何體的體積為(  )
A.$\frac{20}{3}$B.$\frac{25}{3}$C.4D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.在△ABC中,AB=9,BD=6,CD⊥AB,那么$\overrightarrow{AC}$•$\overrightarrow{AB}$=27.

查看答案和解析>>

同步練習(xí)冊(cè)答案