設(shè)i為虛數(shù)單位,則復(fù)數(shù)
5-6i
i
=
 
考點(diǎn):復(fù)數(shù)代數(shù)形式的乘除運(yùn)算
專題:數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:將所求的復(fù)數(shù)的分母實(shí)數(shù)化,即可得到答案.
解答: 解:∵復(fù)數(shù)
5-6i
i
=
(5-6i)•(-i)
i•(-i)
=-6-5i.
故答案為:-6-5i.
點(diǎn)評(píng):本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若z=
3
-i(i是虛數(shù)單位),則z2=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知?jiǎng)狱c(diǎn)P(x,y)滿足x2+y2-|x|-|y|=0,O為坐標(biāo)原點(diǎn),則|PO|的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓錐曲線C:
x=2cosθ
y=
3
sinθ
(θ為參數(shù))和定點(diǎn)A(0,
3
),F(xiàn)1,F(xiàn)2是此圓錐曲線的左、右焦點(diǎn).
(Ⅰ)以原點(diǎn)O為極點(diǎn),以x軸的正半軸為極軸建立極坐標(biāo)系,求直線AF2的極坐標(biāo)方程;
(Ⅱ)經(jīng)過點(diǎn)F1,且與直線AF2垂直的直線l交此圓錐曲線于M、N兩點(diǎn),求||MF1|-|NF1||的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若ζ~N(-2,σ2),且P(-4<ζ<-2)=0.3,則P(ζ>0)的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某小組有3名男生和2名女生,從中任選2名同學(xué)參加演講比賽.下列各對(duì)事件中,為對(duì)立事件的是( 。
A、恰有一名男生和恰有2名男生
B、至少一名男生和至少一名女生
C、至少有一名男生和與全是女生
D、至少有一名男生和全是男生

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

各項(xiàng)都為正數(shù)的等比數(shù)列{an}中,a1=2,a3=8,則公比q的值為( 。
A、2B、3C、4D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

由a1=1,an+1=
an
3an+1
給出的數(shù)列{an}的第34項(xiàng)是(  )
A、
1
100
B、100
C、
34
103
D、
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某醫(yī)療研究所為了檢驗(yàn)?zāi)撤N血清預(yù)防感冒的作用,把500名使用血清的人與另外500名未使用血清的人一年中的感冒記錄作比較,提出假設(shè)H0:“這種血清不能起到預(yù)防感冒的作用”,利用2×2列聯(lián)表計(jì)算的K2≈3.918,經(jīng)查對(duì)下面的臨界值表,我們( 。
P(K2≥k0 0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k0 0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828
A、至少有95%的把握認(rèn)為“這種血清能起到預(yù)防感冒的作用”
B、至少有99%的把握認(rèn)為“這種血清能起到預(yù)防感冒的作用”
C、至少有97.5%的把握認(rèn)為“這種血清能起到預(yù)防感冒的作用”
D、沒有充分理由說明“這種血清能起到預(yù)防感冒的作用”

查看答案和解析>>

同步練習(xí)冊(cè)答案