在△ABC中,若acosA+bcosB=ccosC,則△ABC的形狀是


  1. A.
    銳角三角形
  2. B.
    直角三角形
  3. C.
    鈍角三角形
  4. D.
    等腰直角三角形
B
分析:根據(jù)題中的條件acosA+bcosB=ccosC和三角形的內(nèi)角和公式,利用三角函數(shù)的和(差)角公式和誘導(dǎo)公式得到2cosAcosB=0,得到A或B為得到答案即可.
解答:∵acosA+bcosB=ccosC,
∴sinAcosA+sinBcosB=sinCcosC
∴sin2A+sin2B=sin2C,2sin(A+B)cos(A-B)=2sinCcosC
∴cos(A-B)=-cos(A+B),2cosAcosB=0
∴cosA=0或cosB=0,得
∴△ABC是直角三角形.
故答案為B.
點(diǎn)評:考查學(xué)生三角函數(shù)中的恒等變換應(yīng)用的能力.要靈活運(yùn)用三角函數(shù)的和(差)角公式和誘導(dǎo)公式.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,若AC=1,AB=
3
,C=
3
,則BC=
1
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•佛山二模)在△ABC中,若
AC
BC
=1
,
AB
BC
=-2
,則|
BC
|
=
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•成都二模)在△ABC中,若
AC
BC
=1,
AB
BC
=-2,則|
BC
|的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,若AC=,AB=,∠C=,則BC等于(    )

A.5         B.        C.3    D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,若AC=,AB=,∠C=,則△ABC的面積為(    )

A.    B.    C.3    D.

查看答案和解析>>

同步練習(xí)冊答案