設(shè)是橢圓上一動點,是橢圓的兩個焦點,則的最大值為
A.3B.4C.5D.16
B

試題分析:在中,設(shè),由余弦定理可知,結(jié)合橢圓的性質(zhì)化簡得:;當點位于橢圓的上頂點時,有最大值,且,此時的最大值為4.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓:的左焦點為,且過點.

(1)求橢圓的方程;
(2)設(shè)過點P(-2,0)的直線與橢圓E交于A、B兩點,且滿足.
①若,求的值;
②若M、N分別為橢圓E的左、右頂點,證明:

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知橢圓=1及以下3個函數(shù):①f(x)=x;②f(x)=sin x;③f(x)=cos x.其中函數(shù)圖像能等分該橢圓面積的函數(shù)個數(shù)有(  )
A.1個B.2個
C.3個D.0個

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

直線x-2y+2=0經(jīng)過橢圓=1(ab>0)的一個焦點和一個頂點,則該橢圓的離心率為________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知橢圓=1(0<b<2)與y軸交于A,B兩點,點F為該橢圓的一個焦點,則△ABF面積的最大值為(  ).
A.1B.2 C.4 D.8

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知橢圓的短軸長為2,離心率為,設(shè)過右焦點的直線與橢圓交于不同的兩點A,B,過A,B作直線的垂線AP,BQ,垂足分別為P,Q.記, 若直線l的斜率,則的取值范圍為      

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知F1F2分別為橢圓C1=1(a>b>0)的上下焦點,其中F1是拋物線C2x2=4y的焦點,點MC1C2在第二象限的交點,且|MF1|=.

(1)試求橢圓C1的方程;
(2)與圓x2+(y+1)2=1相切的直線lyk(xt)(t≠0)交橢圓于A,B兩點,若橢圓上一點P滿足,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

橢圓的焦距等于(   )
A.20B.16 C.12D.8

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

橢圓的焦點到直線的距離為      .

查看答案和解析>>

同步練習冊答案