【題目】已知函數(shù)f(x)=|x﹣2|﹣|x+1|.
(1)解不等式f(x)>1.
(2)當x>0時,函數(shù)g(x)= (a>0)的最小值總大于函數(shù)f(x),試求實數(shù)a的取值范圍.

【答案】
(1)解:當x>2時,原不等式可化為x﹣2﹣x﹣1>1,此時不成立;

當﹣1≤x≤2時,原不等式可化為2﹣x﹣x﹣1>1,即﹣1≤x<0,

當x<﹣1時,原不等式可化為2﹣x+x+1>1,即x<﹣1,

綜上,原不等式的解集是{x|x<0}


(2)解:因為當x>0時, ,當且僅當 時“=”成立,

所以 , ,所以f(x)∈[﹣3,1),

,即a≥1為所求


【解析】(1)分類討論,去掉絕對值,求得原絕對值不等式的解集.(2)由條件利用基本不等式求得 ,f(x)∈[﹣3,1),再由 ,求得a的范圍.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某名校從2008年到2017年考入清華、北大的人數(shù)可以通過以下表格反映出來.(為了方便計算,將2008年編號為1,2009年編號為2,以此類推……)

年份

人數(shù)

(1)根據(jù)最近5年的數(shù)據(jù),利用最小二乘法求出之間的線性回歸方程,并用以預測2018年該校考入清華、北大的人數(shù);(結果要求四舍五入至個位)

(2)從這10年的數(shù)據(jù)中隨機抽取2年,記其中考入清華、北大的人數(shù)不少于的有年,

的分布數(shù)列和數(shù)學期望.

參考公式:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,內角A,B,C所對的邊分別為a,b,c.已知b=acosC+3bsin(B+C).
(1)若 ,求角A;
(2)在(1)的條件下,若△ABC的面積為 ,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱中,側面是邊長為2的正方形,點是棱的中點.

1)證明:平面.

2)若三棱錐的體積為4,求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在多面體中,四邊形是菱形,⊥平面.

(1)求證:平面⊥平面

(2)若與平面所成夾角為,且,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】土筍凍是閩南種廣受歡迎的特色傳統(tǒng)風味小吃某小區(qū)超市銷售一款土筍凍,進價為每個15元,售價為每個20元.銷售的方案是當天進貨,當天銷售,未售出的全部由廠家以每個10元的價格回購處理.根據(jù)該小區(qū)以往的銷售情況,得到如圖所示的頻率分布直方圖:

(1)估算該小區(qū)土筍凍日需求量的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點值代表);

(2)已知該超市某天購進了150個土筍凍,假設當天的需求量為銷售利潤為元.

(i)求關于的函數(shù)關系式;

(ii)結合上述頻率分布直方圖,以額率估計概率的思想,估計當天利潤不小于650元的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x﹣lnx+a﹣1,g(x)= +ax﹣xlnx,其中a>0.
(1)求f(x)的單調區(qū)間;
(2)當x≥1時,g(x)的最小值大于 ﹣lna,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=sin(2x+φ),其中φ為實數(shù),若f(x)≤|f( )|對x∈R恒成立,且f( )>f(π),則f(x)的單調遞增區(qū)間是(
A.[kπ﹣ ,kπ+ ](k∈Z)
B.[kπ,kπ+ ](k∈Z)
C.[kπ+ ,kπ+ ](k∈Z)
D.[kπ﹣ ,kπ](k∈Z)

查看答案和解析>>

同步練習冊答案