選修4—1:幾何證明選講
如圖,PA切⊙O于點(diǎn),D的中點(diǎn),過點(diǎn)D引割線交⊙O兩點(diǎn).
求證:
證明:,DP=DADP2=DB·DC,即,所以

試題分析:證明:因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001610098371.png" style="vertical-align:middle;" />與圓相切于,
所以,   
因?yàn)?i>D為PA中點(diǎn),所以DP=DA,
所以DP2=DB·DC,即 . ………………5分
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001610504654.png" style="vertical-align:middle;" />,
所以,       
所以.            …………………… 10分
點(diǎn)評(píng):利用切割線定理結(jié)合相似三角形
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,⊙的半徑OB垂直于直徑AC,為AO上一點(diǎn),    的延長(zhǎng)線交⊙于點(diǎn)N,過點(diǎn)N的切線交CA的延長(zhǎng)線于點(diǎn)P.

(1)求證:;
(2)若⊙的半徑為,OA=,求的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

(幾何證明選講選做題)如圖,AB、CD是圓的兩條弦,
且AB是線段CD的中垂線,已知AB=6,CD=,則線段AC的長(zhǎng)度為     

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分10分)
如圖,△ABC是⊙O的內(nèi)接三角形,PA是⊙O的切線,PB交AC于點(diǎn)E,交⊙O于點(diǎn)D,若PE=PA,,PD=1,BD=8,求線段BC的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,的外接圓的圓心為,, 則等于(  )
A.B.C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,已知△ABC內(nèi)接于圓O,點(diǎn)D在OC 的延長(zhǎng)線上,AD是⊙0的切線,若∠B=30°,AC=2,則OD的長(zhǎng)為           

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

(幾何證明選講選做題)如圖所示,過圓外一點(diǎn)做一條直線與圓 交于兩點(diǎn),,與圓相切于點(diǎn).已知圓的半徑為,,則______   .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖1,在平面直角坐標(biāo)系中,邊長(zhǎng)為1的正方形OABC的頂點(diǎn)B在軸的正半軸上,O為坐標(biāo)原點(diǎn).現(xiàn)將正方形OABC繞O點(diǎn)按順時(shí)針方向旋轉(zhuǎn).
 (1)當(dāng)點(diǎn)A第一次落到軸正半軸上時(shí),求邊BC在旋轉(zhuǎn)過程中所掃過的面積;
。2)若線段AB與軸的交點(diǎn)為M(如圖2),線段BC與直線的交點(diǎn)為N.設(shè)的周長(zhǎng)為,在正方形OABC旋轉(zhuǎn)的過程中值是否有改變?并說明你的結(jié)論;
(3)設(shè)旋轉(zhuǎn)角為,當(dāng)為何值時(shí),的面積最。壳蟪鲞@個(gè)最小值, 并求出此時(shí)△BMN的內(nèi)切圓半徑.

      

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若直線與曲線為參數(shù),且有兩個(gè)不同的交點(diǎn),則實(shí)數(shù)的取值范圍是__________.

查看答案和解析>>

同步練習(xí)冊(cè)答案