已知函數(shù).

(1)若函數(shù)處取得極值,且函數(shù)只有一個(gè)零點(diǎn),求的取值范圍.

(2)若函數(shù)在區(qū)間上不是單調(diào)函數(shù),求的取值范圍.

 

【答案】

  (1);(2).

【解析】

試題分析:(1)函數(shù)處取得極值,知,再由函數(shù)只有一個(gè)零點(diǎn)和函數(shù)的圖象特點(diǎn)判斷函數(shù)的極大值和極小值和0的大小關(guān)系即可解決,這是解決三次多項(xiàng)式函數(shù)零點(diǎn)個(gè)數(shù)的一般方法,體現(xiàn)了數(shù)形結(jié)合的數(shù)形思想;(2)三次函數(shù)的導(dǎo)函數(shù)是二次函數(shù),要使三次函數(shù)在不是單調(diào)函數(shù),則要滿足導(dǎo)數(shù)的,要使函數(shù)在區(qū)間上不是單調(diào)函數(shù),還要滿足三次函數(shù)的導(dǎo)函數(shù)在上至少有一個(gè)零點(diǎn).

試題解析:(1),由

所以,

可知:當(dāng)時(shí),,單調(diào)遞增;當(dāng)時(shí),,單調(diào)遞減;

當(dāng)時(shí),,單調(diào)遞增; 而.

所以函數(shù)只有一個(gè)零點(diǎn),解得的取值范圍是.

.由條件知方程上有兩個(gè)不等的實(shí)根,且在至少有一個(gè)根.由 ;

使得:.

綜上可知:的取值范圍是.

考點(diǎn):三次函數(shù)的零點(diǎn)、三次函數(shù)的單調(diào)性.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿分12分)已知函數(shù)

(1)若,試確定函數(shù)的單調(diào)區(qū)間;(2)若,且對(duì)于任意,恒成立,試確定實(shí)數(shù)的取值范圍;(3)設(shè)函數(shù),求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆寧夏高二上學(xué)期期末考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分12分)已知函數(shù),

(1)若,求的單調(diào)區(qū)間;

(2)當(dāng)時(shí),求證:

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年湖南省岳陽(yáng)市高三第一次質(zhì)量檢測(cè)理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分13分)已知函數(shù)

(1)若的極值點(diǎn),求實(shí)數(shù)的值;

(2)若上為增函數(shù),求實(shí)數(shù)的取值范圍;

(3)當(dāng)時(shí),方程有實(shí)根,求實(shí)數(shù)的最大值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年湖北省華中師大一附中高三上學(xué)期期中檢測(cè)文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)。

(1)若,求函數(shù)的值;

(2)求函數(shù)的值域。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:吉林省10-11學(xué)年高二下學(xué)期期末考試數(shù)學(xué)(理) 題型:解答題

已知函數(shù)

(1)若從集合中任取一個(gè)元素,從集合中任取一個(gè)元素,求方程有兩個(gè)不相等實(shí)根的概率;

(2)若是從區(qū)間中任取的一個(gè)數(shù),是從區(qū)間中任取的一個(gè)數(shù),求方程沒(méi)有實(shí)根的概率.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案