【題目】已知數(shù)列{an}的各項(xiàng)均為正數(shù),前n和為Sn , 且Sn= (n∈N*).
(1)求證:數(shù)列{an}是等差數(shù)列;
(2)設(shè)bn=an3n , 求數(shù)列{bn}的前n項(xiàng)的和Tn .
【答案】
(1)
解:證明:當(dāng)n≥2時(shí), .…①
…②
①﹣②得: ,
整理得:(an+an﹣1)(an﹣an﹣1)=(an+an﹣1).
∵數(shù)列{an}的各項(xiàng)均為正數(shù),即an+an﹣1≠0,
∴an﹣an﹣1=1(n≥2).
當(dāng)n=1時(shí), ,得 ,
由a1>0,得a1=2,…(4分)
∴數(shù)列{an}是首項(xiàng)為2,公差為1的等差數(shù)列.
(2)
解:由(1)得an=2+(n﹣1)×1=n+1
∴
…(1)
…+n×3n+(n+1)×3n+1…(2)
(1)﹣(2)得
∴
∴
【解析】(1)當(dāng)當(dāng)n≥2時(shí),求得Sn及Sn﹣1 , 做差求得: 整理得:(an+an﹣1)(an﹣an﹣1)=(an+an﹣1)由an+an﹣1≠0,即可得到an﹣an﹣1=1,當(dāng)n=1時(shí),求得a1=2即可得數(shù)列{an}是等差數(shù)列;(2)由(1)求得數(shù)列{an}的通項(xiàng)公式,數(shù)列{bn}的前n項(xiàng)和Tn , 采用乘以公比“錯(cuò)位相減法”,即可求得Tn .
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解等差數(shù)列的通項(xiàng)公式(及其變式)的相關(guān)知識(shí),掌握通項(xiàng)公式:或,以及對(duì)數(shù)列的前n項(xiàng)和的理解,了解數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)F1(﹣c,0)、F2(c,0)是橢圓 =1(a>b>0)的兩個(gè)焦點(diǎn),P是以F1F2為直徑的圓與橢圓的一個(gè)交點(diǎn),若∠PF1F2=5∠PF2F1 , 則橢圓的離心率為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的不等式ax2﹣bx+c≥0的解集為{x|1≤x≤2},則cx2+bx+a≤0的解集為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]在平面坐標(biāo)系中xOy中,已知直線(xiàn)l的參考方程為(t為參數(shù)),曲線(xiàn)C的參數(shù)方程為(s為參數(shù))。設(shè)p為曲線(xiàn)C上的動(dòng)點(diǎn),求點(diǎn)P到直線(xiàn)l的距離的最小值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直三棱柱中, , 為線(xiàn)段的中點(diǎn).
(Ⅰ)求證: ;
(Ⅱ)若直線(xiàn)與平面所成角的正弦值為,求的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一元二次不等式ax2+bx+c>0的解集是(﹣ ,2),則cx2+bx+a<0的解集是( )
A.(﹣3, )
B.(﹣∞,﹣3)∪( ,+∞)
C.(﹣2, )
D.(﹣∞,﹣2)∪( ,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】三棱柱ABC﹣A1B1C1的側(cè)面AA1C1C為正方形,側(cè)面AA1B1B⊥側(cè)面BB1C1C,且AC=2,AB= ,∠A1AB=45°,E、F分別為AA1、CC1的中點(diǎn).
(1)求證:AA1⊥平面BEF;
(2)求二面角B﹣EB1﹣C1的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)橢圓: ()的左右焦點(diǎn)分別為, ,下頂點(diǎn)為,直線(xiàn)的方程為.
(Ⅰ)求橢圓的離心率;
(Ⅱ)設(shè)為橢圓上異于其頂點(diǎn)的一點(diǎn), 到直線(xiàn)的距離為,且三角形的面積為.
(1)求橢圓的方程;
(2)若斜率為的直線(xiàn)與橢圓相切,過(guò)焦點(diǎn), 分別作, ,垂足分別為, ,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC的外接圓半徑為1,角A,B,C的對(duì)邊分別為a,b,c,且2acosA=ccosB+bcosC.
(1)求cosA及a的值;
(2)若b2+c2=4,求△ABC的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com