【題目】已知數(shù)列{an}的各項(xiàng)均為正數(shù),前n和為Sn , 且Sn= (n∈N*).
(1)求證:數(shù)列{an}是等差數(shù)列;
(2)設(shè)bn=an3n , 求數(shù)列{bn}的前n項(xiàng)的和Tn

【答案】
(1)

解:證明:當(dāng)n≥2時(shí), .…①

…②

①﹣②得:

整理得:(an+an1)(an﹣an1)=(an+an1).

∵數(shù)列{an}的各項(xiàng)均為正數(shù),即an+an1≠0,

∴an﹣an1=1(n≥2).

當(dāng)n=1時(shí), ,得

由a1>0,得a1=2,…(4分)

∴數(shù)列{an}是首項(xiàng)為2,公差為1的等差數(shù)列.


(2)

解:由(1)得an=2+(n﹣1)×1=n+1

…(1)

…+n×3n+(n+1)×3n+1…(2)

(1)﹣(2)得


【解析】(1)當(dāng)當(dāng)n≥2時(shí),求得Sn及Sn1 , 做差求得: 整理得:(an+an1)(an﹣an1)=(an+an1)由an+an1≠0,即可得到an﹣an1=1,當(dāng)n=1時(shí),求得a1=2即可得數(shù)列{an}是等差數(shù)列;(2)由(1)求得數(shù)列{an}的通項(xiàng)公式,數(shù)列{bn}的前n項(xiàng)和Tn , 采用乘以公比“錯(cuò)位相減法”,即可求得Tn
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解等差數(shù)列的通項(xiàng)公式(及其變式)的相關(guān)知識(shí),掌握通項(xiàng)公式:,以及對(duì)數(shù)列的前n項(xiàng)和的理解,了解數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)F1(﹣c,0)、F2(c,0)是橢圓 =1(a>b>0)的兩個(gè)焦點(diǎn),P是以F1F2為直徑的圓與橢圓的一個(gè)交點(diǎn),若∠PF1F2=5∠PF2F1 , 則橢圓的離心率為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的不等式ax2﹣bx+c≥0的解集為{x|1≤x≤2},則cx2+bx+a≤0的解集為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]在平面坐標(biāo)系中xOy中,已知直線(xiàn)l的參考方程為(t為參數(shù)),曲線(xiàn)C的參數(shù)方程為(s為參數(shù))。設(shè)p為曲線(xiàn)C上的動(dòng)點(diǎn),求點(diǎn)P到直線(xiàn)l的距離的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直三棱柱中, , 為線(xiàn)段的中點(diǎn).

(Ⅰ)求證: ;

(Ⅱ)若直線(xiàn)與平面所成角的正弦值為,求的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一元二次不等式ax2+bx+c>0的解集是(﹣ ,2),則cx2+bx+a<0的解集是(
A.(﹣3,
B.(﹣∞,﹣3)∪( ,+∞)
C.(﹣2,
D.(﹣∞,﹣2)∪( ,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】三棱柱ABC﹣A1B1C1的側(cè)面AA1C1C為正方形,側(cè)面AA1B1B⊥側(cè)面BB1C1C,且AC=2,AB= ,∠A1AB=45°,E、F分別為AA1、CC1的中點(diǎn).

(1)求證:AA1⊥平面BEF;
(2)求二面角B﹣EB1﹣C1的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)橢圓 )的左右焦點(diǎn)分別為, ,下頂點(diǎn)為,直線(xiàn)的方程為.

(Ⅰ)求橢圓的離心率;

(Ⅱ)設(shè)為橢圓上異于其頂點(diǎn)的一點(diǎn), 到直線(xiàn)的距離為,且三角形的面積為.

(1)求橢圓的方程;

(2)若斜率為的直線(xiàn)與橢圓相切,過(guò)焦點(diǎn), 分別作, ,垂足分別為, ,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知△ABC的外接圓半徑為1,角A,B,C的對(duì)邊分別為a,b,c,且2acosA=ccosB+bcosC.
(1)求cosA及a的值;
(2)若b2+c2=4,求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案