若集合A={x|x(x-4)≤0},B={x|log2(x2-x)>1},則A∩B=(  )
A、(2,4]
B、[2,4]
C、(-∞,0)∪[0,4]
D、(-∞,-1)∪[0,4]
考點:交集及其運算
專題:集合
分析:求出集合A,B,利用集合的基本運算進行求解.
解答: 解:A={x|x(x-4)≤0}={x|0≤x≤4},
B={x|log2(x2-x)>1}={x|x2-x>2}={x|x>2或x<-1},
則A∩B={x|2<x≤4},
故選:A
點評:本題主要考查集合的基本運算,要求熟練掌握集合的交并補運算,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列說法中正確的是( 。
①若一個平面內(nèi)的任何直線都與另一個平面無公共點,則這兩個平面平行;
②過平面外一點有且僅有一個平面和已知平面平行;
③過平面外兩點不能作平面與已知平面平行;
④若一條直線和一個平面平行,經(jīng)過這條直線的任何平面都與已知平面平行.
A、①③B、②④C、①②D、③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求y=logasin2x(a>0且a≠1)的導(dǎo)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

化簡:
(1)
sin(α-π)cot(α-2π)
cos(α-π)tan(α-2π)

(2)cot2α(tan2α-sin2α).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)A={x|y=cos(
1
x+1
)},B={y|y=tanx,x∈[-
π
4
,
π
4
]},則A∩B=( 。
A、∅
B、{x|x≠-1}
C、{x|-1≤x≤1}
D、{x|-1<x≤1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=Asin(ωx+φ)(其中A>0,ω,0,|φ|<
π
2
)的圖象如圖所示,為了得到g(x)=sin2x的圖象,則只需將f(x)的圖象( 。
A、向左平移
π
6
個長度單位
B、向右平移
π
3
個長度單位
C、向右平移
π
6
個長度單位
D、向左平移
π
3
個長度單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某幾何體的三視圖如圖,則該幾何體的表面積為( 。
A、24B、36C、48D、60

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
,
b
c
是同一平面內(nèi)的三個向量,其中
a
=(1,-2)
(1)若|
b
|=2
5
,且
a
b
同向,求
b
的坐標(biāo)
(2)若|
c
|=
15
,且
a
c
的夾角為30°,求(2
a
+
c
)•(4
a
-3
c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3+ax2+4(a∈R是常數(shù)),曲線y=f(x)在點(1,f(1))處的切線在y軸上的截距為5.
(1)求a的值;
(2)k≤0,討論直線y=kx與曲線y=f(x)的公共點的個數(shù).

查看答案和解析>>

同步練習(xí)冊答案