下列命題中假命題是(  )
A、“存在x∈R,使得x2+x+1<0”的否定是“對任意x∈R,均有x2+x+1≥0”
B、設(shè)隨機變量ξ~N(0,1).若P(ξ≥2)=p.則P(-2<ξ<0)=
1
2
-p
C、若函數(shù)y=lg(mx2-x-1)的值域為R,則m<-
1
4
D、若a>0,b>0,a+b=4.則
1
a
+
2
b
的最小值為
3+2
2
4
考點:命題的真假判斷與應(yīng)用
專題:綜合題,簡易邏輯
分析:根據(jù)命題的否定、正態(tài)分布的對稱性、函數(shù)值域求解方法、基本不等式對命題判斷即可.
解答: 解:“存在x∈R,使得x2+x+1<0”的否定是“對任意x∈R,均有x2+x+1≥0”,正確;
設(shè)隨機變量ξ~N(0,1),則圖象關(guān)于x=0對稱,∵P(ξ≥2)=p,∴P(-2<ξ<0)=
1
2
-p,正確;
若函數(shù)y=lg(mx2-x-1)的值域為R,則△=1+4m≥0,∴m≥-
1
4
,故不正確;
若a>0,b>0,a+b=4.則
1
a
+
2
b
=
1
4
1
a
+
2
b
)(a+b)=
1
4
(3+
b
a
+
2a
b
)≥
3+2
2
4
,
1
a
+
2
b
的最小值為
3+2
2
4
,正確.
故選:C.
點評:本題考查命題的真假判斷與應(yīng)用,涉及知識點:據(jù)命題的否定、正態(tài)分布的對稱性、函數(shù)值域求解方法、基本不等式,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知cos(π-α)=-
1
3
,則cos2α=(  )
A、
7
9
B、-
7
9
C、
8
9
D、-
8
9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x、y滿足約束條件
x-y+2≥0
3x-y-2≤0
x≥0
y≥0
,若目標(biāo)函數(shù)z=ax+by(a>0,b>0)的最大值為6,則log3
1
a
+
2
b
)的最小值為(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}的前n項和為Sn(n∈N*),且an=2n+λ,若數(shù)列{Sn}在{n|n≥5,n∈N+}內(nèi)為遞增數(shù)列,則實數(shù)λ的取值范圍為( 。
A、(-3,+∞)
B、(-10,+∞)
C、[-11,+∞)
D、(-12,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|0<x<6},B={x||x-2|<3},則A∩B=(  )
A、{x|-1<x<6}
B、{x|-1<x<5}
C、{x|0<x<3}
D、{x|0<x<5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=cos2x-
1
2
(x∈R),則f(x)是( 。
A、最小正周期為
π
2
的奇函數(shù)
B、最小正周期為π的奇函數(shù)
C、最小正周期為2π的偶函數(shù)
D、最小正周期為π的偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知變量x,y滿足
x-2y+4≥0
x≤2
x+y-2≥0
,則x2+y2的取值范圍是( 。
A、[
2
13
]
B、[
2
5
]
C、[2,13]
D、[2,5]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(1-x)ex-1.
(Ⅰ)求函數(shù)f(x)的最大值;
(Ⅱ)若x≥0時,g(x)=ex+λ1n(1-x)-1≤0,求λ的取值范圍;
(Ⅲ)證明:
1
en+1
+
1
en+2
+
1
en+3
+…+
1
e2n
<n+ln2(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=cos2x+sinx
(1)求f(
π
3
)的值;
(2)在△ABC中,角A、B、C所對的邊分別為a、b、c,若f(B)=1,b=1,c=
3
,求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊答案