正四棱錐的側(cè)棱長(zhǎng)為,底面邊長(zhǎng)為中點(diǎn),則異面直線所成的角是      

 

解析試題分析:連接底面正方形ABCD對(duì)角線AC、BD,取底面ABCD對(duì)角線AC的中點(diǎn)F,連接EF,BD,說(shuō)明EF與BE的成角是BE與SC的成角,通過(guò)在△BFE中根據(jù)余弦定理,BF2=EF2+BE2-2EF•BEcos∠BEF,求出cos∠BEF解得異面直線BE與SC所成角的大。
連接底面正方形ABCD對(duì)角線AC、BD,取底面ABCD對(duì)角線AC的中點(diǎn)F,連接EF,BD,EF是三角形ASC的中位線,EF∥SC,且EF=SC,則EF與BE的成角是BE與SC的成角, BF=,AB=
,EF=,三角形SAB是等腰三角形,從S作SG⊥AB,
cosA==,根據(jù)余弦定理,BE2=AE2+AB2-2AE•AB•cosA=2,BE=,在△BFE中根據(jù)余弦定理,BF2=EF2+BE2-2EF•BEcos∠BEF,cos∠BEF=,∠BEF=60°;
異面直線BE與SC所成角的大小60°.
故答案為:60°
考點(diǎn):本題主要是考查異面直線及其所成的角,考查計(jì)算能力,是基礎(chǔ)題
點(diǎn)評(píng):解決該試題的關(guān)鍵是利用平移法得到相交直線的夾角,即為異面直線所成的角。進(jìn)而得到結(jié)論。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

如圖,在平行四邊ABCD中,,,若將其沿BD折成直二面角 A-BD-C,則三棱錐A—BCD的外接球的體積為_(kāi)______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

已知直線m,n與平面α,β,給出下列三個(gè)命題:
①若m∥α,n∥α,則m∥n;
②若m∥α,n⊥α,則n⊥m;
③若m⊥α,m∥β,則α⊥β.
其中真命題的個(gè)數(shù)是______個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

已知a、b是兩條不同的直線,a、b是兩個(gè)不同的平面,在下列命題
① ;②;③;④ 
中,正確的命題是          (只填序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

有三個(gè)平面,β,γ,給出下列命題:
①若,β,γ兩兩相交,則有三條交線     ②若⊥β,⊥γ,則β∥γ
③若⊥γ,β∩=a,β∩γ=b,則a⊥b   ④若∥β,β∩γ=,則∩γ=
其中真命題是        

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

三條平行直線可以確定平面_________個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

已知直線和平面,且,則的位置關(guān)系是             

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

如圖,已知四面體P-ABC中,PA=PB=PC,且AB=AC,∠BAC=90°,則異面直線PA與BC所成的角為_(kāi)_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

已知向量p的模是,向量q的模為1,p與q的夾角為,a=3p+2q,b=p-q,則以a、b為鄰邊的平行四邊形的長(zhǎng)度較小的對(duì)角線的長(zhǎng)是________.

查看答案和解析>>

同步練習(xí)冊(cè)答案