7.已知函數(shù)f(x)=$\frac{{x}^{2}}{{e}^{x}}$.
(1)求f(x)的極小值和極大值;
(2)當(dāng)曲線y=f(x)的切線l的斜率為正數(shù)時(shí),求l在x軸上的截距和取值范圍.

分析 (1)利用導(dǎo)數(shù)的運(yùn)算法則即可得出f′(x),利用導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系及函數(shù)的極值點(diǎn)的定義,即可求出函數(shù)的極值;
(2)利用導(dǎo)數(shù)的幾何意義即可得到切線的斜率,得出切線的方程,利用方程求出與x軸交點(diǎn)的橫坐標(biāo),再利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值、最值即可.

解答 解:(1)∵f(x)=x2e-x,
∴f′(x)=2xe-x-x2e-x=e-x(2x-x2),
令f′(x)=0,解得x=0或x=2,
令f′(x)>0,可解得0<x<2;
令f′(x)<0,可解得x<0或x>2,
故函數(shù)在區(qū)間(-∞,0)與(2,+∞)上是減函數(shù),在區(qū)間(0,2)上是增函數(shù).
∴x=0是極小值點(diǎn),x=2極大值點(diǎn),又f(0)=0,f(2)=$\frac{4}{{e}^{2}}$.
故f(x)的極小值和極大值分別為0,$\frac{4}{{e}^{2}}$;
(2)設(shè)切點(diǎn)為(x0,${{x}_{0}}^{2}{e}^{-{x}_{0}}$),
則切線方程為y-${{x}_{0}}^{2}{e}^{-{x}_{0}}$=${e}^{-{x}_{0}}$(2x0-x02)(x-x0),
令y=0,解得x=(x0-2)+$\frac{2}{{x}_{0}-2}$+3,
∵曲線y=f(x)的切線l的斜率為正數(shù),
∴${e}^{-{x}_{0}}$(2x0-x02)>0,
∴0<x0<2,
令g(x0)=(x0-2)+$\frac{2}{{x}_{0}-2}$+3,
則g′(x0)=$\frac{({x}_{0}-2)^{2}-2}{({x}_{0}-2)^{2}}$.
當(dāng)0<x0<2時(shí),令g′(x0)=0,解得x0=2-$\sqrt{2}$
當(dāng)0<x0<2-$\sqrt{2}$時(shí),g′(x0)<0,函數(shù)g(x0)單調(diào)遞減;
當(dāng)2-$\sqrt{2}$<x0<2時(shí),g′(x0)>0,函數(shù)g(x0)單調(diào)遞增.
故當(dāng)x0=2-$\sqrt{2}$時(shí),函數(shù)g(x0)取得極大值,也即最大值,且g(2-$\sqrt{2}$)=3-2$\sqrt{2}$.
綜上可知:切線l在x軸上截距的取值范圍是(-∞,3-2$\sqrt{2}$].

點(diǎn)評(píng) 本題考查利用導(dǎo)數(shù)求函數(shù)的極值與利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、切線、函數(shù)的值域,綜合性強(qiáng),考查了推理能力和計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.判斷直線x+y一3=0與圓(x-1)2+y2=1的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.等差數(shù)列{an}滿足a5=5,S7=28,數(shù)列{bn}的前n項(xiàng)和為Tn,其中b1=1,bn+1-Tn=1,
(1)求數(shù)列{an}及數(shù)列{bn}的通項(xiàng)公式
(2)若不等式(-1)nλ<$\frac{{a}_{1}}{_{1}}$+$\frac{{a}_{2}}{_{2}}$+…+$\frac{{a}_{n}}{_{n}}$+$\frac{n}{{2}^{n-1}}$對(duì)一切n∈N*恒成立,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.有窮數(shù)列1,1+2,1+2+4,…,1+2+4+…+2n-1所有項(xiàng)的和為2n+1-n-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.己知a>2,p=a+$\frac{1}{a-2}$,q=2${\;}^{-{a}^{2}+4a-2}$,則( 。
A.p>qB.p<qC.p≥qD.p≤q

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知0<α<π,且sinα•cosα=-$\frac{60}{169}$,則sinα-cosα=$\frac{17}{13}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)集合A={x|-2≤x≤5},B={x|x2-3mx+2m2-m-1<0}.
(1)當(dāng)x∈Z時(shí),求A的非空真子集的個(gè)數(shù).
(2)若B=∅,求m的取值范圍.
(3)若A?B,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)函數(shù)fn(x)=-xn+3ax(a∈R,n∈N+),若對(duì)任意的x1,x2∈[-1,1],都有|f3(x1)-f3(x2)|≤1,則a的取值范圍是( 。
A.[$\frac{1}{6}$,$\frac{1}{\root{3}{16}}$]B.[$\frac{1}{6}$,$\frac{1}{4}$]C.[$\frac{1}{9}$,$\frac{1}{\root{3}{16}}$]D.[$\frac{1}{9}$,$\frac{1}{4}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知:圓C:(x-1)2+(y-2)2=25,直線l:(m+1)x+(2m+1)y-7m-4=0.
求:(1)求直線l恒過定點(diǎn)P的坐標(biāo);
(2)求證:不論m取何值,直線l與圓恒有兩個(gè)交點(diǎn);
(3)求直線l被圓M截得的弦長(zhǎng)最小時(shí)的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案