10.若(x-a)2($\frac{1}{x}$-1)4的展開式中常數(shù)項(xiàng)為15,則a的值為( 。
A.1B.8C.-1或9D.1或-9

分析 根據(jù)(x-a)2($\frac{1}{x}$-1)4的展開式,得出展開式中常數(shù)項(xiàng)算式,列出方程求出a的值.

解答 解:∵(x-a)2($\frac{1}{x}$-1)4=(x2-2ax+a2)•(${C}_{4}^{0}$•x-4-${C}_{4}^{1}$•x-3+${C}_{4}^{2}$•x-2-${C}_{4}^{3}$•x-1+1),
∴展開式中常數(shù)項(xiàng)為${C}_{4}^{2}$+2a•${C}_{4}^{3}$+a2=15,
化簡(jiǎn)得a2+8a-9=0,
解得a=-9,或a=1.
故選:D.

點(diǎn)評(píng) 本題主要考查了二項(xiàng)式定理的應(yīng)用問題,利用二項(xiàng)展開式的通項(xiàng)公式是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.設(shè)x,y滿足約束條件$\left\{\begin{array}{l}x≥1\\ y≥\frac{1}{2}x\\ 2x+y≤10\end{array}\right.$,向量$\overrightarrow a=(y-2x,m),\overrightarrow b=(1,1)$,且$\overrightarrow a∥\overrightarrow b$,則m的最大值為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=a${\;}^{si{n}^{4}\frac{x}{2}}$${\;}^{-si{n}^{2}\frac{x}{2}}$(0<a<1)試討論函數(shù)的奇偶性,并求出它的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖是一塊直角梯形園地ABCD,AB∥CD,∠BAD=90°,經(jīng)測(cè)最,AB=14m,CD=10m,∠ABC=60°,擬過線段AB上一點(diǎn)E設(shè)計(jì)一條直路EF(點(diǎn)F在四邊形ABCD的邊上,不計(jì)路的寬度),將該園地分為面積之比為3:1的左、石兩部分分別種植不同花卉.設(shè)EB=x,EF=y(單位:m)
(1)當(dāng)點(diǎn)F與點(diǎn)C重合時(shí),試確定點(diǎn)E的位置;
(2)求y關(guān)于x的函數(shù)關(guān)系式;
(3)請(qǐng)確定點(diǎn)E,F(xiàn)的位置,使直路EF長(zhǎng)度最短.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.在等比數(shù)列{an}中,3a1,$\frac{1}{2}{a_5},2{a_3}$成等差數(shù)列,則$\frac{{{a_9}+{a_{10}}}}{{{a_7}+{a_8}}}$=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)函數(shù)f(x)=(x+a)lnx,g(x)=$\frac{2{x}^{2}}{{e}^{x}}$.已知曲線f(x)在點(diǎn)(1,f(1))處的切線過點(diǎn)(2,3)
(1)求實(shí)數(shù)a的值;
(2)是否存在自然數(shù)k,使得方程f(x)=g(x)在(k,k+1)內(nèi)存在唯一的根?如果存在,求出k,如果不存在,請(qǐng)說明理由;
(3)設(shè)函數(shù)m(x)=min{f(x),g(x)}(min(p,q)表示p,q中的較小值),求m(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在銳角三角形ABC中,2sin(A+B)-$\sqrt{3}$=0,c=$2\sqrt{5}$.
(1)求角C的大。
(2)求△ABC的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.某農(nóng)業(yè)科研實(shí)驗(yàn)室,對(duì)春季晝夜溫差大小與某蔬菜種子發(fā)芽多少之間的關(guān)系進(jìn)行研究,分別記錄了3月1日至3月6日的每天晝夜溫差與實(shí)驗(yàn)室每天每100粒種子浸泡后的發(fā)芽數(shù),得到如表數(shù)據(jù):
日期3月1日3月2日3月3日3月4日3月5日3月6日
晝夜溫差(℃)9111312810
發(fā)芽數(shù)(粒)232530261624
(1)求此種蔬菜種子在這6天的平均發(fā)芽率;
(2)從3月1日至3月6日這六天中,按照日期從前往后的順序任選2天記錄發(fā)芽的種子數(shù)分別為m,n,用(m,n)的形式列出所有基本事件,并求滿足$\left\{\begin{array}{l}{25≤m≤30}\\{25≤n≤30}\end{array}\right.$的事件A的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.若C${\;}_{2n}^{3}$=10C${\;}_{n}^{3}$,求n的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案