若△ABC的邊滿足C=60°,則的值為         .

【答案】4 

由余弦定理得,即,解得。

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設(shè)G、M分別為不等邊△ABC的重心與外心,A(-1,0)、B(1,0),GM∥AB.
(1)求點C的軌跡方程;
(2)設(shè)點C的軌跡為曲線E,是否存在直線l,使l過點(0.1)并與曲線E交于P、Q兩點,且滿足
OP
OQ
=-2
?若存在,求出直線l的方程,若不存在,說明理由.
注:三角形的重心的概念和性質(zhì)如下:設(shè)△ABC的重心,且有
GD
GC
=
GE
GA
=
GF
GB
=
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•廣州二模)等邊三角形ABC的邊長為3,點D、E分別是邊AB、AC上的點,且滿足
AD
DB
=
CE
EA
=
1
2
(如圖1).將△ADE沿DE折起到△A1DE的位置,使二面角A1-DE-B成直二面角,連結(jié)A1B、A1C (如圖2).

(1)求證:A1D丄平面BCED;
(2)在線段BC上是否存在點P,使直線PA1與平面A1BD所成的角為600?若存在,求出PB的長;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•臨沂二模)若△ABC的邊a、b、c,a2+b2-c2=4,c滿足且C=60°,則ab的值為
4
4

查看答案和解析>>

科目:高中數(shù)學 來源:2013年山東省臨沂市高考數(shù)學二模試卷(文科)(解析版) 題型:填空題

若△ABC的邊a、b、c,a2+b2-c2=4,c滿足且C=60°,則ab的值為   

查看答案和解析>>

同步練習冊答案