關(guān)于直線a、b、l,以及平面α、β,下列命題中正確的是( 。
A.若aα,bα,則ab
B.若aα,b⊥a,則b⊥α
C.若a?α,b?α,且l⊥a,l⊥b,則l⊥α
D.若a⊥α,aβ,則α⊥β
以正方體為例 對于A選項,設下底面ABCD為平面α,在上底面A1D1所在直線為a,B1D1所在直線為b,直線a、b都平行于平面α,但直線a、b不平行,故A項不對 (如圖1)

對于B選項,設下底面ABCD為平面α,上底面A1C1所在直線為a,B1D1所在直線為b,直線a是平面α的平行線,直線b與a垂直,但直線b與平面α不垂直,故B選項不對(如圖2)

對于C選項,設下底面ABCD為平面α,直線AB、CD所在直線分別為a、b,AD1所在直線為l.可見直線a、b是平面α內(nèi)的平行線,雖然直線a、b都與直線l垂直,但直線l與平面α不垂直,故C選項不對(如圖3)
由A、B、C都不對,得應該選擇D選項.
故答案為D
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在長方體中,,點是棱上的一個動點.

(1)證明:
(2)當的中點時,求點到面的距離;
(3)線段的長為何值時,二面角的大小為.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,四棱錐P-ABCD中,底面ABCD是菱形,且∠DAB=60°,側(cè)面PAD為正三角形,其所在的平面垂直于底面ABCD,求證:AD⊥PB.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知平面α,β,γ,且平面α平面β,平面α⊥平面γ;
求證:平面β⊥平面γ

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,邊長為4的正方形ABCD所在平面與正三角形PAD所在平面互相垂直,M,Q分別為PC,AD的中點,
(1)求四棱錐P-ABCD的體積;
(2)求證:PA平面MBD;
(3)試問:在線段AB上是否存在一點N,使得平面PCN⊥平面PQB?若存在,試指出點N的位置,并證明你的結(jié)論;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知PA⊥α,PB⊥β,垂足分別是A,B,且α∩β=l,.
(Ⅰ)求證:l⊥平面PAB;
(Ⅱ)若PA=PB=
2
2
AB
,判斷平面α與平面β的位置關(guān)系,并給出證明.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖所示,在斜三棱柱ABC-A1B1C1中,∠BAC=90°,BC1⊥AC,則C1在面ABC上的射影H必在(  )
A.直線AB上B.直線BC上C.直線CA上D.△ABC內(nèi)部

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,直三棱柱ABC-A1B1C1中,AC=BC=1,∠ACB=90°,AA1=
2
,D是A1B1中點.
(1)求證C1D⊥平面AA1B1B;
(2)當點F在BB1上什么位置時,會使得AB1⊥平面C1DF?并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知A(1,0,2),B(1,-3,1),點M在y軸上且到A、B兩點的距離相等,則M點坐標為( 。
A.(-1,0,0)B.(0,-1,0)C.(0,0,1)D.(0,1,0)

查看答案和解析>>

同步練習冊答案