5.已知數(shù)列{an}前n項(xiàng)和滿足Sn-Sn-1=$\sqrt{{S}_{n}}$+$\sqrt{{S}_{n-1}}$  (n≥2),a1=1,則an=( 。
A.nB.2n-1C.n2D.2n2-1

分析 利用平方差公式對已知數(shù)列遞推式化簡整理,求得$\sqrt{{S}_{n}}-\sqrt{{S}_{n-1}}$=1,根據(jù)等差數(shù)列的定義判斷出數(shù)列{$\sqrt{{S}_{n}}$}是一個(gè)首項(xiàng)為1公差為1的等差數(shù)列.求得數(shù)列{$\sqrt{{S}_{n}}$}的通項(xiàng)公式,再由an=Sn-Sn-1求得an

解答 解:由Sn-Sn-1=$\sqrt{{S}_{n}}$+$\sqrt{{S}_{n-1}}$,得$(\sqrt{{S}_{n}}+\sqrt{{S}_{n-1}})(\sqrt{{S}_{n}}-\sqrt{{S}_{n-1}})$=$\sqrt{{S}_{n}}$+$\sqrt{{S}_{n-1}}$,
∴$\sqrt{{S}_{n}}-\sqrt{{S}_{n-1}}=1$,
∴數(shù)列{$\sqrt{{S}_{n}}$}是一個(gè)首項(xiàng)為1公差為1的等差數(shù)列.
∴$\sqrt{{S}_{n}}$=1+(n-1)×1=n,
∴Sn=n2
當(dāng)n≥2,an=Sn-Sn-1=n2-(n-1)2=2n-1;
a1=1適合上式,
∴an=2n-1,
故選:B.

點(diǎn)評 本題考查數(shù)列遞推式,考查了等差關(guān)系的確定,訓(xùn)練了由數(shù)列的前n項(xiàng)和求數(shù)列的通項(xiàng)公式,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,四邊形ABCD是正方形,DE⊥平面ABCD,AF∥DE,AF=$\frac{1}{2}AD=\frac{1}{3}$ED=1.
(Ⅰ)求二面角E-AC-D的正切值;
(Ⅱ)設(shè)點(diǎn)M是線段BD上一個(gè)動(dòng)點(diǎn),試確定點(diǎn)M的位置,使得AM∥平面BEF,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.在等差數(shù)列{an}中,an=3n-31,記bn=|an|,則數(shù)列{bn}的前30項(xiàng)和755.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若變量x,y滿足約束條件$\left\{\begin{array}{l}{x+y-2≥0}\\{x-y+2≥0}\\{x-2≤0}\end{array}\right.$,n=2x+y-2,則 取最大值時(shí),(2$\sqrt{x}$+$\frac{1}{x}$)n二項(xiàng)展開式中的常數(shù)項(xiàng)為240.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知x<0,y<0,且3x+y=-2,則xy的最大值為( 。
A.$\frac{3}{2}$B.$\frac{4}{9}$C.$\frac{1}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.函數(shù)f(x)=ax2+4(a+1)x-3在[2,+∞)上遞減,則a的取值范圍是( 。
A.a≤-$\frac{1}{2}$B.-$\frac{1}{2}$≤a<0C.0<a≤$\frac{1}{2}$D.a≥$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.“因?yàn)橹笖?shù)函數(shù)y=ax(a>0且a≠1)是增函數(shù),而y=($\frac{1}{3}$)x是指數(shù)函數(shù),所以y=($\frac{1}{3}$)x是增函數(shù).”在上面的推理中( 。
A.大前提錯(cuò)誤B.小前提錯(cuò)誤
C.推理形式錯(cuò)誤D.大前提、小前提及推理形式都錯(cuò)誤

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.$\frac{sin(-340°)sin70°}{co{s}^{2}155°-si{n}^{2}25°}$的值是$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.(I)已知直線y=2x是△ABC中∠C的平分線所在的直線,若點(diǎn)A,B的坐標(biāo)分別是(-4,2),(3,1),求點(diǎn)C的坐標(biāo).
(II)已知點(diǎn)A(1,1),B(2,2),點(diǎn)P在直線y=$\frac{1}{2}$x上,求|PA|2+|PB|2取得最小值時(shí)P點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案