在數(shù)列{an}中,a1=1,an+2+(-1)nan=2,記Sn是數(shù)列{an}的前n項和,則S60=
930
930
分析:由an+2+(-1)nan=2得,當(dāng)n為奇數(shù)時,an+2-an=2,可判斷數(shù)列{an}的奇數(shù)項構(gòu)成等差數(shù)列,當(dāng)n為偶數(shù)時,an+2+an=2,即a2+a4=a4+a6=…=2,然后利用分組求和可求得答案.
解答:解:由an+2+(-1)nan=2得,當(dāng)n為奇數(shù)時,an+2-an=2,即數(shù)列{an}的奇數(shù)項構(gòu)成等差數(shù)列,首項為1,公差為2,
當(dāng)n為偶數(shù)時,an+2+an=2,即a2+a4=a4+a6=…=2,
∴S60=(a1+a3+…+a59)+(a2+a4+…+a60
=(1+3+…)+(2+2+…)
=30×1+
30×29
2
×2
+2×15=930,
故答案為:930.
點評:本題考查數(shù)列遞推式、數(shù)列的求和問題,考查分類討論思想,考查學(xué)生解決問題的能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,
a
 
1
=1
,an=
1
2
an-1+1
(n≥2),則數(shù)列{an}的通項公式為an=
2-21-n
2-21-n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,a 1=
1
3
,并且對任意n∈N*,n≥2都有an•an-1=an-1-an成立,令bn=
1
an
(n∈N*).
(Ⅰ)求數(shù)列{bn}的通項公式;
(Ⅱ)設(shè)數(shù)列{
an
n
}的前n項和為Tn,證明:
1
3
Tn
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,a=
12
,前n項和Sn=n2an,求an+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,a1=a,前n項和Sn構(gòu)成公比為q的等比數(shù)列,________________.

(先在橫線上填上一個結(jié)論,然后再解答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年廣東省汕尾市陸豐市碣石中學(xué)高三(上)第四次月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

在數(shù)列{an}中,a,并且對任意n∈N*,n≥2都有an•an-1=an-1-an成立,令bn=(n∈N*).
(Ⅰ)求數(shù)列{bn}的通項公式;
(Ⅱ)設(shè)數(shù)列{}的前n項和為Tn,證明:

查看答案和解析>>

同步練習(xí)冊答案