在一個棱長為的正四面體內(nèi)有一點(diǎn)P,它到三個面的距離分別是1cm,2cm,3cm,則它到第四個面的距離為_______________cm .   
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分) 已知在正方體ABCD —A1B1C1D1中,E、F分別是D1D、BD的中點(diǎn),G在棱CD上,且CG =

(1)求證:EF⊥B1C;
(2)求EF與G C1所成角的余弦值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)如圖在三棱錐P-ABC中,PA=3,AC=AB=4,PB=PC=BC=5,D、E分別是BC、AC的中點(diǎn),F(xiàn)為PC上的一點(diǎn),且PF:FC=3:1。

(Ⅰ)求證:;
(Ⅱ)試在PC上確定一點(diǎn)G,使平面ABG//平面DEF;
(Ⅲ)在滿足(Ⅱ)的情況下,求直線GB與平面ABC所成角的正弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(14分)在四棱錐PABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,EPD的中點(diǎn),PA=2AB=2.
(Ⅰ)求四棱錐PABCD的體積V
(Ⅱ)若FPC的中點(diǎn),求證PC⊥平面AEF;
(Ⅲ)求證CE∥平面PAB

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題10分)
如圖,在多面體ABCDEF中,四邊形ABCD是正方形,AB=2EF=2,EF∥AB,EF⊥FB,∠BFC=90°,BF=FC.
(1)求證:平面ABFE⊥平面DCFE;
(2)求四面體B—DEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分8分)
如圖,在直三棱柱中,分別是的中點(diǎn),點(diǎn)上,
求證:(Ⅰ)∥平面
(Ⅱ)平面平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè) 是兩個不重合的平面,為不重合的直線,則下列命題正確的(   ) 
A.若,則B.若,則
C.若D.若

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知點(diǎn)在球心為的球面上,的內(nèi)角所對應(yīng)的邊長分別為,且,,球心到截面的距離為,則該球的表面積為           .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)是夾角為的異面直線,則滿足條件“,,且”的平面,(    )
A.不存在 B.有且只有一對
C.有且只有兩對D.有無數(shù)對

查看答案和解析>>

同步練習(xí)冊答案