橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
3
2
,橢圓與直線x+2y+8=0相交于點P,Q,且|PQ|=
10
,求橢圓的方程.
分析:設出橢圓的標準方程,根據(jù)離心率及a、b、c的關系消去一個參數(shù),使橢圓的標準方程中只含有一個參數(shù);把直線方程代入橢圓的方程,轉化為關于y的一元二次方程,使用根與系數(shù)的關系以及兩點間的距離公式,求出這個參數(shù)的值,進而得到橢圓的標準方程.
解答:解:e=
c
a
=
3
2
,則c=
3
2
a
.由c2=a2-b2,得a2=4b2
x2
4b2
+
y2
b2
=1
x+2y+8=0
消去x,得2y2+8y+16-b2=0.
由根與系數(shù)關系,得y1+y2=-4,y1y2=
16-b2
2

|PQ|2=(x2-x12+(y2-y12 =5(y1-y22 =5[(y1+y22-4y1y2]=10,
即5[16-2(16-b2)]=10,解得b2=9,則a2=36.
所以橢圓的方程為
x2
36
+
y2
9
=1
點評:本題考查用待定系數(shù)法求橢圓的標準方程、一元二次方程根與系數(shù)的關系,以及兩點間的距離公式的應用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知橢圓
x2
a2
+
y2
b
=1(a>b>0)
的左、右焦點分別為F1、F2,離心率e=
2
2
,右準線方程為x=2.
(1)求橢圓的標準方程;
(2)過點F1的直線l與該橢圓交于M、N兩點,且|
F2M
+
F2N
|=
2
26
3
,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,橢圓
x2
a2
+
y2
b 
=1(a>b>0)與過點A(2,0)B(0,1)的直線有且只有一個公共點T,且橢圓的離心率e=
3
2

(Ⅰ)求橢圓方程;
(Ⅱ)設F1、F2分別為橢圓的左、右焦點,求證:|AT|2=
1
2
|AF1||AF2|

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,橢圓
x2
a2
+
y2
b 
=1(a>b>0)與過點A(2,0)B(0,1)的直線有且只有一個公共點T,且橢圓的離心率e=
3
2

(Ⅰ)求橢圓方程;
(Ⅱ)設F1、F2分別為橢圓的左、右焦點,M為線段AF1的中點,求證:∠ATM=∠AF1T.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設 A(x1,y1)、B(x2,y2)是橢圓
x2
a2
+
y2
b2
=1
(a>b>0)上的兩點,O為坐標原點,向量
m
=(
x1
a
,
y1
b
),
n
=(
x2
a
,
y2
b
)
m
n
=0

(1)若A點坐標為(a,0),求點B的坐標;
(2)設
OM
=cosθ•
OA
+sinθ•
OB
,證明點M在橢圓上;
(3)若點P、Q為橢圓 上的兩點,且
PQ
OB
,試問:線段PQ能否被直線OA平分?若能平分,請加以證明;若不能平分,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:四川 題型:解答題

已知橢圓
x2
a2
+
y2
b
=1(a>b>0)
的左、右焦點分別為F1、F2,離心率e=
2
2
,右準線方程為x=2.
(1)求橢圓的標準方程;
(2)過點F1的直線l與該橢圓交于M、N兩點,且|
F2M
+
F2N
|=
2
26
3
,求直線l的方程.

查看答案和解析>>

同步練習冊答案