【題目】如圖,已知四邊形ABCD是邊長為2的菱形,∠ABC=60°,平面AEFC⊥平面ABCD,EF∥AC,AE=AB,AC=2EF.
(1)求證:平面BED⊥平面AEFC;
(2)若四邊形AEFC為直角梯形,且EA⊥AC,求二面角B-FC-D的余弦值.
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分12分)
已知函數(shù)是奇函數(shù),的定義域為.當時, .(e為自然對數(shù)的底數(shù)).
(1)若函數(shù)在區(qū)間上存在極值點,求實數(shù)的取值范圍;
(2)如果當x≥1時,不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某企業(yè)引進現(xiàn)代化管理體制,生產效益明顯提高.2018年全年總收入與2017年全年總收入相比增長了一倍,實現(xiàn)翻番.同時該企業(yè)的各項運營成本也隨著收入的變化發(fā)生了相應變化.下圖給出了該企業(yè)這兩年不同運營成本占全年總收入的比例,下列說法正確的是( )
A.該企業(yè)2018年原材料費用是2017年工資金額與研發(fā)費用的和
B.該企業(yè)2018年研發(fā)費用是2017年工資金額、原材料費用、其它費用三項的和
C.該企業(yè)2018年其它費用是2017年工資金額的
D.該企業(yè)2018年設備費用是2017年原材料的費用的兩倍
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在矩形中,點為邊上的點,點為邊的中點,,現(xiàn)將沿邊折至位置,且平面平面.
(1) 求證:平面平面;
(2) 求二面角的大小.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點A,B關于坐標原點O對稱,,以M為圓心的圓過A,B兩點,且與直線相切,若存在定點P,使得當A運動時,為定值,則點P的坐標為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2019年春節(jié)假期,旅游過年持續(xù)火爆.特別是:東北雪鄉(xiāng)、夢回大唐、江南水鄉(xiāng)、三亞之行這四條路線受到廣大人民的熱播.現(xiàn)有2個家庭準備去這四個地方旅游,假設每個家庭均從這四條路線中任意選取一條路線去旅源,則兩個家庭選擇同一路線的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點的坐標分別為,.三角形的兩條邊,所在直線的斜率之積是.
(1)求點的軌跡方程;
(2)設直線方程為,直線方程為,直線交于,點,關于軸對稱,直線與軸相交于點.若的面積為,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,圓O是一半徑為10米的圓形草坪,為了滿足周邊市民跳廣場舞的需要,現(xiàn)規(guī)劃在草坪上建一個廣場,廣場形狀如圖中虛線部分所示的曲邊四邊形,其中A,B兩點在⊙O上,A,B,C,D恰是一個正方形的四個頂點.根據(jù)規(guī)劃要求,在A,B,C,D四點處安裝四盞照明設備,從圓心O點出發(fā),在地下鋪設4條到A,B,C,D四點線路OA,OB,OC,OD.
(1)若正方形邊長為10米,求廣場的面積;
(2)求鋪設的4條線路OA,OB,OC,OD總長度的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com