(1) (2)
(1)求證:AE⊥BD;
(2)求證:平面PEF⊥平面AECD;
(3)判斷DE能否垂直于平面ABC?并說明理由.
解:(1)證明:連結(jié)BD,取AE中點(diǎn)M,連結(jié)BM,DM.
∵在等腰梯形ABCD中,AD∥BC,AB=AD,∠ABC=60°,E是BC的中點(diǎn),
∴△ABE與△ADE都是等邊三角形.∴BM⊥AE,DM⊥AE.
∵BM∩DM=M,BM,DM平面BDM,∴AE⊥平面BDM.
∵BD平面BDM,∴AE⊥BD.
(2)證明:連結(jié)CM交EF于點(diǎn)N,連結(jié)PN.
∵M(jìn)E∥FC,且ME=FC,∴四邊形MECF是平行四邊形.
∴N是線段CM的中點(diǎn).∵P是線段BC的中點(diǎn),∴PN∥BM.
∵BM⊥平面AECD,∴PN⊥平面AECD.
又∵PN平面PEF,∴平面PEF⊥平面AECD.
(3)DE與平面ABC不垂直.
證明:假設(shè)DE⊥平面ABC,則DE⊥AB.
∴BM⊥平面AECD.∴BM⊥DE.
∵AB∩BM=B,AB,BM平面ABE,∴DE⊥平面ABE.
∴DE⊥AE,這與∠AED=60°矛盾.∴DE與平面ABC不垂直.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
AD |
AM |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012年云南省昆明市高三復(fù)習(xí)教學(xué)質(zhì)量檢測(cè)數(shù)學(xué)試卷(理科)(解析版) 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年廣東省高考數(shù)學(xué)沖刺預(yù)測(cè)試卷01(理科)(解析版) 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com