某種商品原來定價(jià)每件p元,每月將賣出n件,假若定價(jià)上漲x成(這里x成即,0<x≤10),每月賣出數(shù)量將減少y成,而售貨金額變成原來的z倍.

(1)設(shè)yax,其中a是滿足的常數(shù),用a來表示當(dāng)售貨金額最大時(shí)的x值;

(2)若求使售貨金額比原來有所增加的x的取值范圍.

答案:
解析:

  解:(1)由題意知某商品定價(jià)上漲x成時(shí),上漲后的定價(jià)、每月賣出數(shù)量、每月售貨金額分別是元、)元、npz元,

  因而npzp(1+n(1-),

  ∴z(10+x)(10-y).

  在yax的條件下,

  

  由于,則

  要使售貨金額最大,即使z值最大,此時(shí)

  (2)由z(10+x)(10-x)>1,解得0<x<5.

  思路分析:(1)首先把上漲后的銷售額用變量x表示,然后根據(jù)函數(shù)的形式求出最大值.(2)實(shí)際上就是根據(jù)條件解不等式.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某種商品原來定價(jià)每件p元,每月將賣出n件.假若定價(jià)上漲x成(注:x成即定價(jià)為原來的(1+
x
10
)倍,0<x≤10,每月賣出數(shù)量將減少y成,而售貨金額變成原來的z倍.
(1)若y=ax,其中a是滿足
1
3
≤a<1
的常數(shù),用a來表示當(dāng)售貨金額最大時(shí)x的值.
(2)若y=
2
3
x,求使售貨金額比原來有所增加的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某種商品原來定價(jià)每件p元,每月將賣出n件,假若定價(jià)上漲x成(這里x成即,0<x≤10  每月賣出數(shù)量將減少y成,而售貨金額變成原來的 z倍.

(1)設(shè)y=ax,其中a是滿足a<1的常數(shù),用a來表示當(dāng)售貨金額最大時(shí)的x的值;

(2)若y=x,求使售貨金額比原來有所增加的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2005-2006學(xué)年北京市宣武區(qū)高二(上)期末數(shù)學(xué)試卷(解析版) 題型:解答題

某種商品原來定價(jià)每件p元,每月將賣出n件.假若定價(jià)上漲x成(注:x成即定價(jià)為原來的(1+)倍,0<x≤10,每月賣出數(shù)量將減少y成,而售貨金額變成原來的z倍.
(1)若y=ax,其中a是滿足的常數(shù),用a來表示當(dāng)售貨金額最大時(shí)x的值.
(2)若y=x,求使售貨金額比原來有所增加的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2006-2007學(xué)年江蘇省宿遷市高二(上)期末數(shù)學(xué)模擬試卷5(文科)(解析版) 題型:解答題

某種商品原來定價(jià)每件p元,每月將賣出n件.假若定價(jià)上漲x成(注:x成即定價(jià)為原來的(1+)倍,0<x≤10,每月賣出數(shù)量將減少y成,而售貨金額變成原來的z倍.
(1)若y=ax,其中a是滿足的常數(shù),用a來表示當(dāng)售貨金額最大時(shí)x的值.
(2)若y=x,求使售貨金額比原來有所增加的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年廣東省廣州一中高三數(shù)學(xué)二輪復(fù)習(xí):不等式的應(yīng)用練習(xí)1(解析版) 題型:解答題

某種商品原來定價(jià)每件p元,每月將賣出n件.假若定價(jià)上漲x成(注:x成即定價(jià)為原來的(1+)倍,0<x≤10,每月賣出數(shù)量將減少y成,而售貨金額變成原來的z倍.
(1)若y=ax,其中a是滿足的常數(shù),用a來表示當(dāng)售貨金額最大時(shí)x的值.
(2)若y=x,求使售貨金額比原來有所增加的x的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案