如圖1所示,在邊長(zhǎng)為12的正方形ADD1A1中,點(diǎn)B,C在線段AD上,且AB=3,BC=4,作BB1∥AA1,分別交A1D1,AD1于點(diǎn)B1,P,作CC1∥AA1,分別交A1D1,AD1于點(diǎn)C1,Q,將該正方形沿BB1,CC1折疊,使得DD1與AA1重合,構(gòu)成如圖2所示的三棱柱ABC-A1B1C1
(Ⅰ)求證:AB⊥平面BCC1B1;
(Ⅱ)求四棱錐A-BCQP的體積;
(Ⅲ)求平面PQA與平面BCA所成銳二面角的余弦值.

【答案】分析:(Ⅰ)證明直線與平面垂直,關(guān)鍵要找到兩條相交直線與之都垂直.在這個(gè)“折疊問(wèn)題”中,要把握好不變的長(zhǎng)度關(guān)系、線線關(guān)系、線面關(guān)系,比如:AB=3,BC=4,AC=5,所以AB⊥BC;四邊形ADD1A1為正方形,AA1∥BB1,所以AB⊥BB1
(Ⅱ)本題的兩問(wèn)是遞進(jìn)式的,第(1)問(wèn)是為第(2)問(wèn)作鋪墊的.因?yàn)锳B⊥平面BCC1B1,所以AB為四棱錐A-BCQP的高,并且四邊形BCQP為直角梯形.
(Ⅲ)由(Ⅰ)、(Ⅱ)可知,AB,BC,BB1兩兩互相垂直.以B為原點(diǎn),分別以BC、BB1、BA為x、y、z軸,建立如圖所示的空間直角坐標(biāo)系B-xyz,這種解法的好處就是:(1)解題過(guò)程中較少用到空間幾何中判定線線、面面、線面相對(duì)位置的有關(guān)定理,因?yàn)檫@些可以用向量方法來(lái)解決.(2)即使立體感稍差一些的學(xué)生也可以順利解出,因?yàn)橹恍璁?huà)個(gè)草圖以建立坐標(biāo)系和觀察有關(guān)點(diǎn)的位置即可.
解答:(Ⅰ)證明:在正方形ADD1A1中,因?yàn)镃D=AD-AB-BC=5,
所以三棱柱ABC-A1B1C1的底面三角形ABC的邊AC=5.
因?yàn)锳B=3,BC=4,
所以AB2+BC2=AC2,所以AB⊥BC.(2分)
因?yàn)樗倪呅蜛DD1A1為正方形,AA1∥BB1,
所以AB⊥BB1,而B(niǎo)C∩BB1=B,
所以AB⊥平面BCC1B1.(5分)
(Ⅱ)解:因?yàn)锳B⊥平面BCC1B1,
所以AB為四棱錐A-BCQP的高.
因?yàn)樗倪呅蜝CQP為直角梯形,且BP=AB=3,CQ=AB+BC=7,
所以梯形BCQP的面積為
所以四棱錐A-BCQP的體積.(9分)
(Ⅲ)解:由(Ⅰ)、(Ⅱ)可知,AB,BC,BB1兩兩互相垂直.以B為原點(diǎn),建立如圖所示的空間直角坐標(biāo)系B-xyz,

則A(0,0,3),B(0,0,0),C(4,0,0),P(0,3,0),Q(4,7,0),
所以,
設(shè)平面PQA的一個(gè)法向量為n1=(x,y,z).

令x=-1,則y=z=1.
所以n1=(-1,1,1).(12分)
顯然平面BCA的一個(gè)法向量為n2=(0,1,0).
設(shè)平面PQA與平面BCA所成銳二面角為θ.

所以平面PQA與平面BCA所成銳二面角的余弦值為.(14分)
點(diǎn)評(píng):本小題主要考查空間線面關(guān)系、二面角的度量、幾何體的體積等知識(shí),考查數(shù)形結(jié)合、化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,以及空間想象能力、推理論證能力和運(yùn)算求解能力
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖1所示,在邊長(zhǎng)為12的正方形AA′A′1A1中,BB1∥CC1∥AA1,且AB=3,BC=4,AA′1分別交BB1,CC1于點(diǎn)P、Q,將該正方形沿BB1、CC1折疊,使得A′A′1與AA1重合,構(gòu)成如圖2所示的三棱柱ABC-A1B1C1,請(qǐng)?jiān)趫D2中解決下列問(wèn)題:
(1)求證:AB⊥PQ;
(2)在底邊AC上有一點(diǎn)M,滿足AM;MC=3:4,求證:BM∥平面APQ.
(3)求直線BC與平面APQ所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖1所示,在邊長(zhǎng)為12的正方形ADD1A1中,點(diǎn)B,C在線段AD上,且AB=3,BC=4,作BB1∥AA1,分別交A1D1,AD1于點(diǎn)B1,P,作CC1∥AA1,分別交A1D1,AD1于點(diǎn)C1,Q,將該正方形沿BB1,CC1折疊,使得DD1與AA1重合,構(gòu)成如圖2所示的三棱柱ABC-A1B1C1
(Ⅰ)求證:AB⊥平面BCC1B1
(Ⅱ)求四棱錐A-BCQP的體積;
(Ⅲ)求平面PQA與平面BCA所成銳二面角的余弦值.
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖1所示,在邊長(zhǎng)為12的正方形AA′A1′A1中,點(diǎn)B,C在線段AA′上,且AB=3,BC=4,作BB1∥AA1,分別交A1A1′、AA1′于點(diǎn)B1、P,作CC1∥AA1,分別交A1A1′、AA1′于點(diǎn)C1、Q,將該正方形沿BB1、CC1折疊,使得A′A1′與AA1重合,構(gòu)成如圖2所示的三棱柱ABC-A1B1C1
(1)在三棱柱ABC-A1B1C1中,求證:AB⊥平面BCC1B1;
(2)求平面APQ將三棱柱ABC-A1B1C1分成上、下兩部分幾何體的體積之比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖1所示,在邊長(zhǎng)為12的正方形ADD1A1中,點(diǎn)B,C在線段AD上,且AB=3,BC=4,作BB1∥AA1,分別交A1D1,AD1于點(diǎn)B1,P,作CC1∥AA1,分別交A1D1,AD1于點(diǎn)C1,Q,將該正方形沿BB1,CC1折疊,使得DD1與AA1重合,構(gòu)成如圖2所示的三棱柱ABC-A1B1C1
(Ⅰ)求證:AB⊥平面BCC1B1;
(Ⅱ)求四棱錐A-BCQP的體積;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖1所示,在邊長(zhǎng)為的正方形中,,且,分別交于點(diǎn),將該正方形沿折疊,使得重合,構(gòu)成如圖2所示的三棱柱

(Ⅰ)求證:;

(Ⅱ)在底邊上有一點(diǎn),,

求證:

(III)求直線與平面所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案