分析 根據(jù)向量的數(shù)量積的運算得到x+y=1,再由($\frac{1}{x}$+$\frac{1}{y}$)(x+y)=2+$\frac{y}{x}$+$\frac{x}{y}$,根據(jù)基本不等式可得答案.
解答 解:$\overrightarrow{a}$=(x,1),$\overrightarrow$=(1,y-1),$\overrightarrow{a}$⊥$\overrightarrow$,
∴$\overrightarrow{a}$•$\overrightarrow$=x+y-1=0,
即x+y=1,
∵x,y∈R+,
∴($\frac{1}{x}$+$\frac{1}{y}$)(x+y)=2+$\frac{y}{x}$+$\frac{x}{y}$≥2+2$\sqrt{\frac{y}{x}•\frac{x}{y}}$=4,當(dāng)且僅當(dāng)x=y=$\frac{1}{2}$時取等號.
故答案為:4.
點評 本題為基本不等式求最值的應(yīng)用,注意“1”的代入是解決問題的關(guān)鍵,屬中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,3) | B. | (-1,3) | C. | (3,-1) | D. | (-3,-1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 49 | B. | 45 | C. | 7 | D. | 3$\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x-2y+9=0或x+2y+3=0 | B. | 2x-y+9=0或2x+y+3=0 | ||
C. | x+2y+3=0或x-2y+9=0 | D. | x+2y+9=0或2x-y+3=0 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com